بررسی استفاده از پمپ حرارتی در واحد ایزومریزاسیون برای کاهش مصرف انرژی با فناوری پینچ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی شیمی، دانشگاه کاشان

2 استادیار مهندسی شیمی، دانشگاه کاشان

چکیده

فناوری پینچ یکی از روش‌های مؤثر و پرکاربرد در بهینه‌سازی مصرف انرژی است. در تحقیق پیش رو، از فناوری پینچ برای بهینه‌سازی مصرف انرژی در واحد ایزومریزاسیون کمک گرفته شد. در نتیجه، از یک پمپ حرارتی برای بهینه‌سازی مصرف انرژی استفاده شد که در اثر اعمال آن میزان سرویس جانبی گرم و سرد از 61/128 و 9/143GJ/h به مقادیر 8/127 و  152GJ/h تقلیل یافت که این کاهش باعث کاهش میزان مصرف انرژی و افزایش بازدهی واحد مذکور شد. به‌علاوه، استفاده از پمپ‌های حرارتی برای مطالعۀ مبدل‌هایی که بیشترین میزان عبور از پینچ را داشته‌اند منجر به کاهش میزان حرارت عبوری پینچ از 47/22 به  90/19GJ/h شد که معادل 3/11% کاهش در انرژی مصرفی واحد است و این تغییر بسیار کارامد و مفید است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Application of Heat Pump in Isomerization Unit to Decrease the Energy Consumption by Means of Pinch Technology

نویسندگان [English]

  • Z. Ghazizahedi 1
  • M. Hayati-Ashtiani 2
1 Ph. D. in Chemical Engineering, Kashan University
2 Assistant Professor of Chemical Engineering, Kashan University
چکیده [English]

Pinch Technology is one of the effective and practical methods for energy consumption economization. In this research, Pinch Technology has been used for energy consumption optimization in the isomerization unit. As a result, heat pumps have been used for energy consumption optimization in this unit in which the amount of energy consumption in heating and cooling utilities has decreased from 128.61 GJ/h and 143.9 GJ/h to 127.8 GJ/h and 152.0 GJ/h, respectively. This energy-saving leads to a decrease in the amount of energy consumption and an increase in the efficiency of the unit. Heat pumps have been additionally applied to study the heat exchangers with the highest amount of cross-pinch
heat transfer. This study resulted in a significant decrease in the cross-pinch heat transfer, from 22.47 GJ/h to 19.90 GJ/h (11.3% decline).
 

کلیدواژه‌ها [English]

  • Pinch Technology
  • Heat Pump
  • Utilities
  • Isomerization
  • Carnot
[1]Ghazizahedi, A., “Simulation and retrofit Design of Isomerization Process”, Ph.D. Dissertation (Supervisor: Dr. Majid Hayati-Ashtiani), University of Kashan, in Persian, (2021).
[2]        Martín, Á., Mato, F. A., "Hint: An Educational Software for Heat Exchanger Network Design with the Pinch Method",. Education of Chemical Engineering, Vol. 3, pp. 6-14, (2008).
[3]        Mehdizadeh-Fard, M., Pourfayaz, F., Kasaeian, A. B., "Mehrpooya, M., A Practical Approach to Heat Exchanger Network Design in a Complex Natural Gas Refinery", Journal of Natural Gas Science and Engineering, Vol. 40, pp. 141-177, (2017).
[4]        Feng, X., Pu, J., Yang, J., Chu, K. H., "Energy Recovery in Petrochemical Complexes through Heat Integration Retrofit Analysis", Applied Energy, Vol. 88, pp. 1965-1982, (2011).
[5]        Szklo, A., Schaeffer, R., :Fuel Specification, Energy Consumption and CO2 Emission in Oil Refineries", Energy, Vol. 32, pp. 1075-1092, (2007).
[6]        Jarullah, A. T., Abed, F. M., Ahmed, A. M., Mujtaba, L. M., "Optimisation of Several Industrial and Recently Developed AJAM Naphtha Isomerization Processes Using Model Based Techniques", Computers and Chemical Engineering, Vol. 126, pp. 403-420, (2019).
[7]        Jarullah, A. T., Abed, F. M., Al-Tabbakh, B. A., Mujtaba, I. M., "Optimisation of several industrial and recently developed AJAM naphtha isomerization processes using model based techniques", Computer & Chemical Engineering, Vol. 126, pp. 403-420 (2019).
[8]        Ghazizahedi, Z., Hayati-Ashtiani, M., "Retrofitting isomerization process to increase gasoline quality and decrease CO2 emission along with energy analysis using Pinch Technology", Energy Sources, Part A: Recovery, Utilization and Environmental Effects, (2020). DOI: 10.1080/15567036.2020.1859008
[9]        Mohamed, M. F., Shehata, W. M., Abdel Halim, A. A., Gad, F. K., "Improving Gasoline Quality Produced from MIDOR Light Naphtha Isomerization Unit", Egyptian Journal of Petroleum, Vol. 26, pp. 111-124 (2017).
[10]      Chekantsev, N. V., Gyngazova, M. S., Ivanchina E. D., "Development of Complex Mathematical Model of Light Naphtha Isomerization and Rectification Processes", Chemical Engineering Journal, Vol. 238, pp. 120-129, (2014).
[11]      Dhar, A., Vekariya, R. L., Sharma, P., "Kinetics and Mechanistic Study of n-Alkane Hydroisomerization reaction on Pt-doped γ-alumina catalyst", Petroleum, Vol. 3, pp. 489-495, (2017).
[12]      Ebrahim, M., Kawari, A., "Pinch Technology: an Efficient Tool for Chemical-plant Energy and Capital-cost Saving", Applied Energy, Vol. 65, pp. 45-49, (2000).
[13]      Kang, H., Wang, T., Zheng, H., "Comparative Analysis of Regenerative and Air-extraction Multi-stage Humidification–dehumidification Desalination System Using Pinch Technology", Desalination, Vol. 385. pp. 158-166, (2016).
[14]      Manan, Z. A., Nawi, W. N. R. M., Alwi, Sh. R. W., Klemes, J. J., "Advances in Process Integration Research for CO2 Emission Reduction–A Review", Journal of Clean Production, Vol. 167, pp. 1-13, (2017).
[15]      Gu, K., Vassiliadis, V. S., "Limitations in Using Euler's Formula in the Design of Heat Exchanger Networks with Pinch Technology", Computers and Chemical Engineering, Vol. 68, pp. 123-127, (2014). DOI: 10.1080/15567036.2020.1859008