تأثیر نانوذرات سیلیکایی پیوندخورده با عامل متیل و فلوئور بر عملکرد تماس‌دهنده‌های غشایی پلی‌پروپیلنی

نویسندگان

دانشگاه صنعتی سهند

چکیده

استفاده از تماس­دهنده­های غشایی برای پالایش گازهای اسیدی یکی از پیشرفت­های مهم در فرایندهای مهندسی و حفاظت از محیط زیست است. باوجود برتری‌های متعدد تماس‌دهنده­های غشایی، تر­شوندگی غشاها مهم­ترین مشکل در گسترش این فناوری به‌شمار می‌رود. در راستای کاهش مشکل تر­شوندگی، در اینپژوهش، غشاهای الیاف توخالی پلی­پروپیلنی فوق آبگریز تهیه و ساختار و عملکرد غشاها، به‌وسیلۀ آزمون­های مختلف ارزیابی شد. نتایج حاصل از اندازه­گیری زاویۀ تماس، نشان داد که برای غشاهای پوشش­دهی شده با گروه عاملی متیل و فلوئور اندازۀ زاویۀ تماس بهترتیب تا °162 و °155 افزایش یافت. همچنین نتایج به‌دست آمده از نمودار ویلسون نشان داد که مقاومت
انتقال جرم غشاهای خالص، پوشش­دهی شده با گروه عاملی متیل و فلوئور به
ترتیب برابر با 78/30% ، 79/18% و 45/22% است. بدین ترتیب غشاهای پوشش­دهی شده با گروه عاملی متیل از پتانسیل بالایی برای کاربرد در تماس­دهنده­های غشایی برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Methyl and Fluorine Grafted Silica Nanoparticles on the Performance of Polypropylene Membrane Contactors

نویسندگان [English]

  • P. Amirabedi
  • A. Akbari
  • R. Yegani
  • S. Raveshiyan
Sahand University of Technology
چکیده [English]

The use of membrane contactors for acidic gases purification is one of the important advances in engineering processes and environmental protection. Despite the many advantages of membrane contactors, the wetting of membranes is the most important problem in developing this technology. In order to reduce the wetting problem of membranes, in this work, super hydrophobic polypropylene hollow fiber membranes were prepared and their structure and performance were evaluated by various tests. The results of the contact angle measurements showed that for the membranes coated with methyl and fluorine functional group the contact angle increased to 162° and 155°, respectively. The results of Wilson's plot also showed that the mass transfer resistance of pure, methyl-coated and fluorine-coated membranes was 30.78%, 18.79% and 22.45%, respectively. Therefore, methyl-coated membranes have a high potential to be used in membrane contactors.

کلیدواژه‌ها [English]

  • Polypropylene
  • Coating
  • Superhydrophobic
  • Membrane Contactors
  • Wilson's Plot

 

[1]        Faramawy, S., Zaki, T., Sakr, A. A. E., "Natural gas origin, composition, and processing: A review", J. Nat. Gas Sci. Eng., 34, pp. 34-54, (2016).
[2]        Faiz, R., Al-Marzouqi, M., "CO2 removal from natural gas at high pressure using membrane contactors: model validation and membrane parametric studies", J. Membr. Sci., 365, pp. 232-241, (2010).
 [3]       Rahim, N. A., Ghasem, N., Al-Marzouqi, M., "Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors", J. Nat. Gas Sci. Eng., 26, pp. 108-117, (2015).
[4]        Kumar, S., Cho, J. H., Moon, I., "Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review", Int. J. Greenhouse Gas Control, 20,
pp. 87-116, (2014).
[5]        George, G., Bhoria, N., AlHallaq, S., Abdala, A., Mittal, V., "Polymer membranes for acid gas removal from natural gas", Sep. Purif. Technol., 158,
pp. 333-356, (2016).
[6]        Ahmadi, R., Sanaeepur, H., Ebadi Amooghin, A., Heydari, A., "Modification of Poly(ether-b-amide) Membrane Properties Using Glycerol for CO2/N2 Gas Separation", Iran. J. Polym. Sci. Technol. (Persian), 31, pp. 461-474, (2018).
[7]        Albarracin Zaidiza, D., Belaissaoui, B., Rode, S., Favre, E., "Intensification potential of hollow fiber membrane contactors for CO2 chemical absorption and stripping using monoethanolamine solutions", Sep. Purif. Technol., 188, pp. 38-51, (2017).
[8]        Giordano, L., Roizard, D., Favre, E., "Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes", Int. J. Greenhouse Gas Control, 68, pp. 46-63, (2018).
[9]        Vogt, M., Goldschmidt, R., Bathen, D., Epp, B., Fahlenkamp, H., "Comparison of membrane contactor and structured packings for CO2 absorption", Energy Procedia, 4, pp. 1471-1477, (2011).
[10]      Gabelman, A., Hwang, S. -T., "Hollow fiber membrane contactors", J. Membr. Sci., 159,
pp. 61-106, (1999).
[11]      Dalane, K., Dai, Z., Mogseth, G., Hillestad, M., Deng, L., "Potential applications of membrane separation for subsea natural gas processing: A review", J. Nat. Gas Sci. Eng., 39, pp. 101-117, (2017).
 
 
 
 
[12]      Naim, R., Ismail, A., Cheer, N., Abdullah, M., "Polyvinylidene fluoride and polyetherimide hollow fiber membranes for CO2 stripping in membrane contactor", Chem. Eng. Res. Des., 92, pp. 1391-1398, (2014).
[13]      Bakeri, G., "Effect of spinneret dimension on structure and performance of polyetherimide hollow fiber membrane in membrane contactor", Iran. J. Polym. Sci. Technol. (Persian), 30, pp. 275-286, (2017).
[14]      Amirabedi, P., Akbari, A., Yegani, R., "Evaluation of Wetting Behavior of Nanocomposite Polypropylene Hollow Fiber Membrane as a Membrane Contactor for CO2 Removal", Iran. J. Polym. Sci. Technol. (Persian), 31, pp. 331-344, (2018).
[15]      Mosadegh-Sedghi, S., Rodrigue, D., Brisson, J.," Wetting phenomenon in membrane contactors – Causes and prevention", J. Membr. Sci., 452,
pp. 332-353,( 2014).
[16]      Zhang, Y., Wang, R., "Gas–liquid membrane contactors for acid gas removal: recent advances and future challenges", Curr. Opin. Chem. Eng., 2,
pp. 255-262, (2013).
[17]      Amirabedi, P., Akbari, A., Yegani, R., "Fabrication of hydrophobic PP/CH3SiO2 composite hollow fiber membrane for membrane contactor application", Sep. Purif. Technol., 228, p. 115689, (2019).
[18]      Rahbari-Sisakht, M., Rana, D., Matsuura, T., Emadzadeh, D., Padaki, M., Ismail, A., "Study on CO2 stripping from water through novel surface modified PVDF hollow fiber membrane contactor", Chem. Eng. J., 246, pp. 306-310, (2014).
[19]      Zhang, Y., Wang, R., Zhang, L., Fane, A., "Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application", Sep. Purif. Technol., 101, pp. 76-84, (2012).
[20]      Zhang, Y., Wang, R., "Fabrication of novel polyetherimide-fluorinated silica organic-inorganic composite hollow fiber membranes intended for membrane contactor application", J. Membr. Sci., 443, pp. 170-80, (2013).
[21]      Rezaei, M., Ismail, A. F., Bakeri, G., Hashemifard, S. A., Matsuura, T., "Effect of general montmorillonite and Cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption", Chem. Eng. J., 260,
pp. 875-885, (2015).
[22]      Lv, Y.,  Yu, X .,  Tu, S. T.,  Yan, J., "Wetting of polypropylene hollow fiber membrane contactors", J. Membr. Sci.,. 362, pp. 444-452, (2010).
[23]      Maroufkhani, M., Ebrahimi, N.G, "Melt rheology of linear and long-chain branched polypropylene blends", Iran. Polym. J., 24, pp. 715-724, (2015).
[24]      Abadchi, M. R., Jalali-Arani, A., "Synergistic effects of nano-scale polybutadiene rubber powder (PBRP) and nanoclay on the structure, dynamic mechanical and thermal properties of polypropylene (PP)", Iran. Polym. J., 24, pp. 805-813, (2015).
[25]      Amirabedi, P., Yegani, R., Hesaraki, A. H., "Hydrophobicity optimization of polypropylene hollow fiber membrane by sol–gel process for CO2 absorption in gas–liquid membrane contactor using response surface methodology", Iran. Polym. J., 26, pp. 431-443, (2017).
[26]      Atchariyawut,S., Jiraratananon,R., Wang, R., "Separation of CO2 from CH4 by using gas–liquid membrane contacting process", J. Membr. Sci., 304, pp. 163–172, (2007).
[27]      Yu, X., An, L., Yang, J., Tu, S. -T., Yan, J., "CO2 capture using a superhydrophobic ceramic membrane contactor", J. Membr. Sci., 496, pp. 1-12, (2015).
[28]      Rezaei, M., Ismail, A., Hashemifard, S. A., Bakeri, G., Matsuura, T., "Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process", Int. J. Greenhouse Gas Control, 26, pp. 147-157, (2014).
[29]      Khaisri, S., deMontigny, D., Tontiwachwuthikul, P., Jiraratananon, R., "Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor", Sep. Purif. Technol., 65, pp. 290-297, (2009).
[30]      Kumar, M., Lawler, J., "Preparation and characterization of negatively charged organic–inorganic hybrid ultrafiltration membranes for protein separation", Sep. Purif. Technol., 130, pp. 112-123, (2014).
[31]      Wang, S., Guo, X., Xie, Y., Liu, L., Yang, H., Zhu, R., Gong, J., Peng, L., Ding, W., "Preparation of superhydrophobic silica film on Mg–Nd–Zn–Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol–gel method", Surf. Coat. Technol., 213, pp. 192-201, (2012).
[32]      Pavia, D. L., Lampman, G. M., Kriz, G. S., Vyvyan, J. A., "Introduction to spectroscopy", Cengage Learning, (2008).
[33]      Yan, S. -P., Fang, M. -X., Zhang, W. -F., Wang, S. -Y., Xu, Z. -K., Luo, Z. -Y., Cen, K. -F., "Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting", Fuel Process. Technol., 88,
pp. 501-511, (2007).
[34]      Li, J. -L., Chen, B. -H., "Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors", Sep. Purif. Technol., 41, pp. 109-122, (2005).
[35]      Fosi-Kofal, M., Mustafa, A., Ismail, A., Rezaei-DashtArzhandi, M., Matsuura, T., "Engineering. PVDF/CaCO3 composite hollow fiber membrane for CO2 absorption in gas–liquid membrane contactor", J. Nat. Gas Sci. Eng., 31, pp. 428-436, (2016).