مروری بر سازوکار سینتیکی و تأثیر مشخصه‌های محیطی بر تولید ‌زیستی هیدروژن به‌وسیلۀ انتروباکتر‌ و کلاستریدیوم‌

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری میکروبیولوژی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

2 دانشیار مهندسی شیمی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

3 استاد میکروبیولوژی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

4 استادیار حشره‌شناسی کشاورزی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

چکیده

تولید زیستی هیدروژن با کنسرسیوم میکروبی متشکل از کلاستریدیوم‌ها و انتروباکترها بررسی شده‌است. استفاده از کنسرسیوم مصنوعی میکروبی علاوه­بر نداشتن دشواری‌های کشت خالص، امکان بررسی تأثیر شرایط محیطی را بر گونه‌های حاضر و همچنین تأثیر آن‌ها را بر یکدیگر و برروی بازده تولید هیدروژن فراهم میآورد. در این مقالۀ مروری، به مسیر تولید زیستی هیدروژن در انتروباکترها و کلاستریدیوم‌ها، نسبت بازده تولید هیدروژن عملی به نظری، تعیین سرعت رشد، توانایی استفاده از سوبستراهای کربنی، اعمال شرایط بی هوازی، pH و حرارت پرداخته شدهاست. انتروباکترها از مسیر پیروات فرمات لیاز (PFL) و کلاستریدیوم‌ها از مسیر پیروات فردوکسین اکسید­و­ردوکتاز (PFOR) هیدروژن را با بازده نظری  2mol H2/mol glucose و 4mol H2/mol glucoseتولید می ­­کنند، باوجود این، مقایسۀ پژوهشهای انجام‌شده در این مقاله، نشان می ­دهد که میانگین بازده هیدروژن تولیدشده در انتروباکترها برابر 1.36mol H2/mol glucoseبا و در کلاستریدیوم ­ها 2.205mol H2/mol glucose است که اختلاف بازده عملی 38% را نشان می‌دهد. انتروباکترها با بی­هوازی کردن سریع  36/1محیط جای‌گزین مناسب مواد احیاکننده ­ای مانند اِل- سیستئین هستند و هزینۀ فرایند را کاهش می ­دهند. این کنسرسیوم درحضور سوبستراهای کربنی ساده و نسبتاً پیچیده مانند پساب­های نشاسته و لیگنوسلولزی، نسبت تلقیح زیاد انتروباکتر به کلاستریدیوم، دامنه pH 5-7 و دمای 39-30 درجه سلسیوس بازده تولید هیدروژن مناسبی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Kinetic Mechanism and the Effect of Environmental Parameters on Biohydrogen Production by Enterobacter and Clostridium

نویسندگان [English]

  • Z. Esfahani Bolandbalaei 1
  • Kh. Rostami 2
  • J. Norouzi 3
  • B. Tafaghodinia 4
1 Ph. D. Student of Microbiology, Islamic Azad University North Tehran Branch, Tehran, Iran
2 Associate Professor of Chemical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran
3 Professor of Microbiology, Islamic Azad University North Tehran Branch, Tehran, Iran
4 Asistant Professor of Agricultural Entomology, Iranian Research Organization for Science and Technology, Tehran, Iran
چکیده [English]

Biohydrogen production by microorganisms including Clostridium and Enterobacter are covered. Artificial microbial consortia have no complications as the pure culture. Further avails the effect of environments interaction on each other and yield of hydrogen production. The present review paper discloses the pathway of hydrogen production by Enterobacter and Clostridium, the rate of growth of the microorganism, The potential of carbohydrate substrate metabolism, pH and temperature influence, and the ratio of experimental to theoretical yield under anaerobic conditions. Enterobacter by Pyruvate formate-lyase (PFL) and Clostridium Pyruvate-ferredoxin oxidoreductase (PFOR) yield 2 mol / mol glucose and 4 mol / mol glucose. On
the count of the present comparison 1.36 to 2.205 mol
/mol glucose produced by Enterobacter and Clostridium, respectively, 38% discrepancy of practical yield is observed. For hydrogen production Clostridium needs strict anaerobic environments and L-cysteine are added, while Enterobacter in consortia uses oxygen and as a result
the production cost is reduced. The consortia are potential to metabolize simple and complex carbon sources like glucose, starch wastewater and lignocellulose wastes. Moreover, reasonably high inoculate ratio of Enterobacter, pH, and, temperature ranges of 5-7 and 30-39
°C are effective for biohydrogen production.
.

کلیدواژه‌ها [English]

  • Enterobacter
  • Clostridium
  • Environmental Parameters
  • Substrate
  • Biohydrogen
  • Microbial Consortia
[1]        Bouckaert, S., Fernandez Pales, A., McGlade, C., Remme, U., Wanner, B., Varro, L., D’Ambrosio, D., Spencer, T., (2021). Net zero by 2050: A roadmap for the global energy sector.
[2]        Tahir, M., Tasleem, S., & Tahir, B. (2020). Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy45(32), 15985-16038. https://doi.org/10.1016/j.ijhydene.2020.04.071
[3]        Mohsin, M., Rasheed, A. K., & Saidur, R. (2018). Economic viability and production capacity of wind generated renewable hydrogen. International Journal of hydrogen energy, 43(5), 2621-2630. https://doi.org/10.1016/j.ijhydene.2017.12.113
[4]        Mayyas, A., Wei, M., & Levis, G. (2020). Hydrogen as a long-term, large-scale energy storage solution when coupled with renewable energy sources or grids with dynamic electricity pricing schemes. International Journal of Hydrogen Energy, 45(33), 16311-16325. https://doi.org/10.1016/j.ijhydene.2020.04.163
[5]        Valente, A., Iribarren, D., & Dufour, J. (2019). Harmonising methodological choices in life cycle assessment of hydrogen: A focus on acidification and renewable hydrogen. International Journal of Hydrogen Energy, 44(35), 19426-19433. https://doi.org/10.1016/j.ijhydene.2018.03.101
[6]        Chaubey, R., Sahu, S., James, O. O., & Maity, S. (2013). A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443-462. https://doi.org/10.1016/j.rser.2013.02.019
[7]        Azwar, M. Y., Hussain, M. A., & Abdul-Wahab, A. K. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renewable and Sustainable Energy Reviews, 31, 158-173. https://doi.org/10.1016/j.rser.2013.11.022
[8]        Li, Y., Zhang, Z., Xia, C., Jing, Y., Zhang, Q., Li, S., Zhu, S., & Jin, P. (2020). Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes. Bioresource Technology, 311, 123549. https://doi.org/10.1016/j.biortech.2020.123549
[9]        Bagheri, M., Emtiazi, G., & Jalili Tabaii, M. (2022). Production of bio-hydrogen by microorganisms and extracellular enzymes: clean energy. Biological Journal of Microorganism, 11(43), 97-117. 10.22108/BJM.2022.131554.1428
[10]      Lee, D. H. (2021). Biohydrogen yield efficiency and the benefits of dark, photo and dark-photo fermentative production technology in circular Asian economies. International Journal of Hydrogen Energy, 46(27), 13908-13922. https://doi.org/10.
1016/j.ijhydene.2020.08.275
[11]      García-Depraect, O., Castro-Muñoz, R., Muñoz, R., Rene, E. R., León-Becerril, E., Valdez-Vazquez, I., Kumar, G., Reyes-Alvarado, L. C., Martínez-Mendoza, L. J., Carrillo-Reyes, J. & Buitrón, G. (2021). A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresource Technology, 324, 124595. https://doi.org/10.1016/j.biortech.2020.124595
[12]      Ergal, I., Bochmann, G., Fuchs, W., Simon, K., & Rittmann, M. R. (2022). Design and engineering of artificial microbial consortia for biohydrogen production. Current Opinion in Biotechnology, 73, 74-80. https://doi.org/10.1016/j.copbio.2021.07.010
[13]      Hu, Y., Shen, Y., & Wang, J. (2020). Pretreatment of antibiotic fermentation residues by combined ultrasound and alkali for enhancing biohydrogen production. Journal of Cleaner Production, 268, 122190. https://doi.org/10.1016/j.jclepro.2020.122190
[14]      de Sá, L. R. V., de Oliveira Faber, M., da Silva, A. S. A., Cammarota, M. C., & Ferreira-Leitão, V. S. (2020). Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renewable Energy, 146, 2408-2415. https://doi.org/10.1016/j.renene.2019.08.089
[15]      Bansal, S. K., Sreekrishnan, T. R., & Singh, R. (2013). Effect of heat pretreated consortia on fermentative biohydrogen production from vegetable waste. National Academy Science Letters, 36, 125-131. https://doi.org/10.1007/s40009-013-0124-4
[16]      Sinbuathong, N., & Sillapacharoenkul, B. (2021). Dark fermentation of starch factory wastewater with acid-and base-treated mixed microorganisms for biohydrogen production. International Journal of Hydrogen Energy, 46(31), 16622-16630. https://doi.org/10.1016/j.ijhydene.2020.06.109
[17]      Lee, M. J., Song, J. H., & Hwang, S. J. (2009). Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresource Technology, 100(3), 1491-1493. https://doi.org/10.1016/j.biortech.2008.08.019
[18]      Van Niel, E. W. J., Budde, M. A. W., De Haas, G. G., Van der Wal, F. J., Claassen, P. A. M., & Stams, A. J. M. (2002). Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfiiInternational Journal of Hydrogen Energy27(11-12), 1391-1398. https://doi.org/10.1016/S0360-3199(02)00115-5
[19]      Pawar, S. S., Vongkumpeang, T., Grey, C., & van Niel, E. W. (2015). Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity. Biotechnology for Biofuels8(1), 1-13. https://doi.org/10.1186/s13068-015-0201-7
[20]      Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193. https://doi.org/10.1016/S0360-3199(02)00131-3
[21]      Prazmowski, A. (1880) Untersuchung über die Entwickelungsgeschichte und Fermentwirking einiger Bacterien-Arten. Inaugural Dissertation, H. Voigt.
[22]      Das, D., & Veziroglu, T. N. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046-6057. https://doi.org/10.1016/j.ijhydene.2008.07.098
[23]      Khanna, N., Kotay, S. M., Gilbert, J. J., & Das, D. (2011). Improvement of biohydrogen production by Enterobacter cloacae IIT-BT 08 under regulated pH. Journal of Biotechnology152(1-2), 9-15. https://doi.org/10.1016/j.jbiotec.2010.12.014
[24]      Esfahani Bolandbalaei, Z., Rostami, Kh. (2020). Isolation of Enterobacteriaceae using economical chemicals that produces biohydrogen by dark fermentation, The 6th International Conference on Environmental Engineering and Natural Resource, Tehran, Iran.
[25]      Lee, D. J., Show, K. Y., & Su, A. (2011). Dark fermentation on biohydrogen production: pure culture. Bioresource Technology102(18), 8393-8402. https://doi.org/10.1016/j.biortech.2011.03.041
[26]      Ramírez-Morales, J. E., Tapia-Venegas, E., Toledo-Alarcón, J., & Ruiz-Filippi, G. (2015). Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Science and Technology, 71(9), 1271-1285. https://doi.org/10.2166/wst.2015.104
[27]      Drapcho, C. M., Nghim, N. P., Walker, T. (2019) Biofuels Engineering Process Technology, McGraw-Hill Education; Translates by Rostami, Kh., publisher: Iranian Research Organization for Science and Technology.
[28]      Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22(9), 477-485. :https://doi.org/10.1016/j.tibtech.2004.07.001
[29]      Kalia, V. C., & Purohit, H. J. (2008). Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology and Biotechnology35(5), 403-419. ttps://doi.org/10.1007/s10295-007-0300-y
[30]      Kumar, N., & Das, D. (2000). Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 35(6), 589-593. https://doi.org/10.1016/S0032-9592(99)00109-0
[31]      Nath, K., Kumar, A., & Das, D. (2006). Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Canadian Journal of Microbiology52(6), 525-532. https://doi.org/10.1139/w06-005
[32]      Seppälä, J. J., Puhakka, J. A., Yli-Harja, O., Karp, M. T., & Santala, V. (2011). Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. International journal of Hydrogen Energy, 36(17), 10701-10708. https://doi.org/10.1016/j.ijhydene.2011.05.189
[32]      Junyapoon, S., Buala, W., & Phunpruch, S. (2011). Hydrogen production with Escherichia coli isolated from municipal sewage sludge. Science & Technology Asia, 9-15.
[33]      Rosales-Colunga, L. M., Razo-Flores, E., & Rodríguez, A. D. L. (2012). Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: impact on hydrogen production. Bioresource Technology, 111, 180-184. https://doi.org/10.1016/j.biortech.2012.01.175
[34]      Ghosh, D., & Hallenbeck, P. C. (2009). Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. International Journal of Hydrogen Energy, 34(19), 7979-7982. https://doi.org/10.1016/j.ijhydene.2009.08.004
[35]      Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., & Takasaki, Y. (1995). Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 80(6), 571-574. https://doi.org/10.1016/0922-338X(96)87733-6
[36]      Kurokawa, T., & Tanisho, S. (2005). Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Marine Biotechnology7, 112-118. https://doi.org/10.1007/s10126-004-3088-z
[37]      Tanisho, S., Kamiya, N., & Wakao, N. (1989). Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica et Biophysica Acta(BBA)- Bioenergetics, 973(1), 1-6. https://doi.org/10.1016/S0005-2728(89)80393-7
[38]      Lu, W., Wen, J., Chen, Y., Sun, B., Jia, X., Liu, M., & Caiyin, Q. (2007). Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International Journal of Hydrogen Energy, 32(8), 1059-1066. https://doi.org/10.1016/j.ijhydene.2006.07.010
[39]      Nakashimada, Y., Rachman, M. A., Kakizono, T., & Nishio, N. (2002). Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. International Journal of Hydrogen Energy, 27(11-12), 1399-1405. https://doi.org/10.1016/S0360-3199(02)00128-3
[40]      Kataoka, N., Miya, A., & Kiriyama, K. (1997). Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Science and Technology, 36(6-7), 41-47. https://doi.org/10.1016/S0273-1223(97)00505-2
[41]      Mitchell, R. J., Kim, J. S., Jeon, B. S., & Sang, B. I. (2009). Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the glucose concentration and hydraulic retention time. Bioresource Technology, 100(21), 5352-5355. https://doi.org/10.1016/j.biortech.2009.05.046
[42]      Lin, P. Y., Whang, L. M., Wu, Y. R., Ren, W. J., Hsiao, C. J., Li, S. L., & Chang, J. S. (2007). Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, 32(12), 1728-1735. https://doi.org/10.1016/j.ijhydene.2006.12.009
[43]      Ho, K. L., Lee, D. J., Su, A., & Chang, J. S. (2012). Biohydrogen from lignocellulosic feedstock via one-step process. International Journal of Hydrogen Energy, 37(20), 15569-15574. https://doi.org/10.1016/j.ijhydene.2012.01.137
[44]      Masset, J., Hiligsmann, S., Hamilton, C., Beckers, L., Franck, F., & Thonart, P. (2010). Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 35(8), 3371-3378. https://doi.org/10.1016/
j.ijhydene.2010.01.061
[45]      Kamalaskar, L. B., Dhakephalkar, P. K., Meher, K. K., & Ranade, D. R. (2010). High biohydrogen yielding Clostridium sp. DMHC-10 isolated from sludge of distillery waste treatment plant. International Journal of Hydrogen Energy, 35(19), 10639-10644. https://doi.org/10.1016/j.ijhydene.2010.05.020
[46]      Liu, I. C., Whang, L. M., Ren, W. J., & Lin, P. Y. (2011). The effect of pH on the production of biohydrogen by clostridia: thermodynamic and metabolic considerations. International Journal of Hydrogen Energy, 36(1), 439-449. https://doi.org/10.1016/j.ijhydene.2010.10.045
[47]      Jo, J. H., Lee, D. S., Park, D., & Park, J. M. (2008). Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology99(14), 6666-6672. https://doi.org/10.1016/j.biortech.2007.11.067
[48]      Jo, J. H., Lee, D. S., & Park, J. M. (2008). The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology99(17), 8485-8491. https://doi.org/10.1016/j.biortech.2008.03.060
[49]      Junghare, M., Subudhi, S., & Lal, B. (2012). Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: Optimization of process parameters. International Journal of Hydrogen Energy, 37(4), 3160-3168. https://doi.org/10.1016/j.ijhydene.2011.11.043
[50]      Chong, M. L., Yee, P. L., Abd Aziz, S., Rahim, R. A., Shirai, Y., & Hassan, M. A. (2009). Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6. International Journal of Hydrogen Energy, 34(21), 8859-8865. https://doi.org/10.1016/j.ijhydene.2009.08.061
[51]      Wang, X., Monis, P. T., Saint, C. P., & Jin, B. (2009). Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5. International Journal of Hydrogen Energy, 34(2), 791-798. https://doi.org/10.1016/j.ijhydene.2008.11.023
[52]      Zhao, X., Xing, D., Liu, B., Lu, L., Zhao, J., & Ren, N. (2012). The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. International Journal of Hydrogen Energy, 37(18), 13711-13717. https://doi.org/10.1016/j.ijhydene.2012.02.144
[53]      Whang, L. M., Lin, C. A., Liu, I. C., Wu, C. W., & Cheng, H. H. (2011). Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Bioresource Technology, 102(18), 8378-8383. https://doi.org/10.1016/j.biortech.2011.03.101
[54]      Jiang, D., Fang, Z., Chin, S. X., Tian, X. F., & Su, T. C. (2016). Biohydrogen production from hydrolysates of selected tropical biomass wastes with Clostridium butyricum. Scientific reports, 6(1), 27205. https://doi.org/10.1038/srep27205
[55]      Zhao, X., Xing, D., Fu, N., Liu, B., & Ren, N. (2011). Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresource Technology, 102(18), 8432-8436. https://doi.org/10.1016/j.biortech.2011.02.086
[56]      Taguchi, F., Takiguchi, S., & Morimoto, M. (1992). Efficient hydrogen production from starch by a bacterium isolated from termites. Journal of Fermentation and Bioengineering, 73(3), 244-245. https://doi.org/10.1016/0922-338X(92)90172-Q
[57]      Pan, C. M., Fan, Y. T., Zhao, P., & Hou, H. W. (2008). Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. International Journal of Hydrogen Energy, 33(20), 5383-5391. https://doi.org/10.1016/j.ijhydene.2008.05.037
[58]      Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van't Riet, K. J. A. E. M. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875-1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990
[59]      Wang, J., & Wan, W. (2008). The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China Series B: Chemistry, 51(11), 1110-1117. https://doi.org/10.1007/s11426-008-0104-6
[60]      Mu, Y., Wang, G., & Yu, H. Q. (2006). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology, 97(11), 1302-1307. https://doi.org/10.1016/j.biortech.2005.05.014
[61]      Mu, Y., Yu, H. Q., & Wang, G. (2007). A kinetic approach to anaerobic hydrogen-producing process. Water Research, 41(5), 1152-1160. https://doi.org/10.1016/j.watres.2006.11.047
[62]      Kumar, N., Monga, P. S., Biswas, A. K., & Das, D. (2000). Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. International Journal of Hydrogen Energy, 25(10), 945-952. https://doi.org/10.1016/S0360-3199(00)00017-3
[63]      Nath, K., Muthukumar, M., Kumar, A., & Das, D. (2008). Kinetics of two-stage fermentation process for the production of hydrogen. International Journal of Hydrogen Energy, 33(4), 1195-1203. https://doi.org/10.1016/j.ijhydene.2007.12.011
[64]      Ntaikou, I., Gavala, H. N., Kornaros, M., & Lyberatos, G. (2008). Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. International Journal of Hydrogen Energy, 33(4), 1153-1163. https://doi.org/10.1016/j.ijhydene.2007.10.053
[65]      Boshagh, F., Rostami, K., & Moazami, N. (2019). Biohydrogen production by immobilized Enterobacter aerogenes on functionalized
multi-walled carbon nanotube. International Journal of Hydrogen Energy, 44(28), 14395-14405. https://doi.org/10.1016/j.ijhydene.2018.11.199
[66]      Boshagh, F., Rostami, K., & Moazami, N. (2019). Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement. Biochemical Engineering Journal144, 64-72. https://doi.org/10.1016/j.bej.2019.01.014
[67]      Jeong, T. Y., Cha, G. C., Yeom, S. H., & Choi, S. S. (2008). Comparison of hydrogen production by four representative hydrogen-producing bacteria. Journal of Industrial and Engineering Chemistry, 14(3), 333-337. https://doi.org/10.1016/j.jiec.2007.09.014
[68]      Yin, Y., & Wang, J. (2017). Isolation and characterization of a novel strain Clostridium butyricum INET1 for fermentative hydrogen production. International Journal of Hydrogen Energy, 42(17), 12173-12180. https://doi.org/10.1016/j.ijhydene.2017.02.083
[69]      Zeidan, A. A., & Van Niel, E. W. (2009). Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. International Journal of Hydrogen Energy34(10), 4524-4528. https://doi.org/10.1016/j.ijhydene.2008.07.092
[70]      Hasibar, B., Ergal, İ., Moser, S., Bochmann, G., Simon, K. M. R., & Fuchs, W. (2020). Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochemical Engineering Journal, 164, 107802. https://doi.org/10.1016/j.bej.2020.107802
[71]      Pachapur, V. L., Sarma, S. J., Brar, S. K., Bihan, Y. L., Buelna, G., & Verma, M. (2017). Hydrogen production from biodiesel industry waste by using a co-culture of Enterobacter aerogenes and Clostridium butyricumBiofuels8(6), 651-662. https://doi.org/10.1080/17597269.2015.1122471
[72]      Ren, Y., Wang, J., Liu, Z., Ren, Y., & Li, G. (2009). Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes. Renewable Energy, 34(12), 2774-2779. https://doi.org/10.1016/j.renene.2009.04.011
[73]      Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii: effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34(8), 3288-3294. https://doi.org/10.1016/j.ijhydene.2009.01.044
[74]      Zhao, P., Fan, S. Q., Tian, L., Pan, C. M., Fan, Y. T., & Hou, H. W. (2010). Hydrogen production characteristics from dark fermentation of maltose by an isolated strain FP 01. International Journal of Hydrogen Energy, 35(13), 7189-7193. https://doi.org/10.1016/j.ijhydene.2009.12.188
[75]      Plangklang, P., Reungsang, A., & Pattra, S. (2012). Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. International Journal of Hydrogen Energy, 37(20), 15525-15532. https://doi.org/10.1016/j.ijhydene.2012.02.186
[76]      Chen, W. M., Tseng, Z. J., Lee, K. S., & Chang, J. S. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy30(10), 1063-1070. https://doi.org/10.1016/j.ijhydene.2004.09.008
[77]      Martinez-Burgos, W. J., do Nascimento Junior, J. R., Medeiros, A. B. P., Herrmann, L. W., Sydney, E. B., & Soccol, C. R. (2021). Biohydrogen production from agro-industrial wastes using Clostridium beijerinckii and isolated bacteria as inoculum. BioEnergy Research, 1-11. https://doi.org/10.1016/j.jclepro.2020.124970
[78]      Balachandar, G., Varanasi, J. L., Singh, V., Singh, H., & Das, D. (2020). Biological hydrogen production via dark fermentation: A holistic approach from lab-scale to pilot-scale. International Journal of Hydrogen Energy, 45(8), 5202-5215. https://doi.org/10.1016/j.ijhydene.2019.09.006
[79]      Ding, S. Y., Bayer, E. A. (2020) Understanding cellulosome interaction with cellulose by
high-resolution imaging, ACS Central Science, 6, p. 1034. https://doi.org/10.1021/acscentsci.0c00662
[80]      Zhang, S. C., Lai, Q. H., Lu, Y., Liu, Z. D., Wang, T. M., Zhang, C., & Xing, X. H. (2016). Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. Journal of Bioscience and Bioengineering, 122(4), 482-487. https://doi.org/10.1016/j.jbiosc.2016.03.014
[81]      Perego, P., Fabiano, B., Ponzano, G. P., & Palazzi, E. (1998). Experimental study of hydrogen kinetics from agroindustrial by-product: optimal conditions for production and fuel cell feeding. Bioprocess Engineering, 19, 205-211. https://doi.org/10.1007/s004490050507
[82]      Rai, P. K., Singh, S. P., & Asthana, R. K. (2012). Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Applied Biochemistry and Biotechnology167, 1540-1549. https://doi.org/10.1007/s12010-011-9488-4
[83]      Jitrwung, R., & Yargeau, V. (2015). Biohydrogen and bioethanol production from biodiesel-based glycerol by Enterobacter aerogenes in a continuous stir tank reactor. International Journal of Molecular Sciences, 16(5), 10650-10664. https://doi.org/10.3390/ijms160510650
[84]      Rao, R., & Basak, N. (2021). Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. International Journal of Hydrogen Energy, 46(2), 1777-1800. https://doi.org/10.1016/j.ijhydene.2020.10.142
[85]      Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenesBioresource Technology227, 335-344. https://doi.org/10.1016/j.biortech.2016.12.073
[86]      Tanisho, S., & Ishiwata, Y. (1994). Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenesInternational Journal of Hydrogen Energy, 19(10), 807-812. https://doi.org/10.1016/0360-3199(94)90197-X
[87]      Tanisho, S., & Ishiwata, Y. (1995). Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. International Journal of Hydrogen Energy, 20(7), 541-545. https://doi.org/10.1016/0360-3199(94)00101-5
[88]      Kumar, K., Roy, S., & Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116-122. https://doi.org/10.1016/j.biortech.2013.01.137
[89]      Ferreira, A. F., Marques, A. C., Batista, A. P., Marques, P. A., Gouveia, L., & Silva, C. M. (2012). Biological hydrogen production by Anabaena sp.–yield, energy and CO2 analysis including fermentative biomass recovery. International Journal of Hydrogen Energy37(1), 179-190. https://doi.org/10.1016/j.ijhydene.2011.09.056
[90]      Batista, A. P., Moura, P., Marques, P. A., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537-543. https://doi.org/10.1016/j.fuel.2013.09.077
[91]      Cheng, J. R., & Zhu, M. J. (2016). Biohydrogen production from pretreated lignocellulose by Clostridium thermocellum. Biotechnology and Bioprocess Engineering, 21, 87-94. https://doi.org/10.1007/s12257-015-0642-7
[92]      Cappelletti, B. M., Reginatto, V., Amante, E. R., & Antônio, R. V. (2011). Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renewable Energy, 36(12), 3367-3372. https://doi.org/10.1016/j.renene.2011.05.015
[93]      Pattra, S., Sangyoka, S., Boonmee, M., & Reungsang, A. (2008). Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 33(19), 5256-5265. https://doi.org/10.1016/j.ijhydene.2008.05.008
[94]      Levin, D. B., Islam, R., Cicek, N., & Sparling, R. (2006). Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy, 31(11), 1496-1503. https://doi.org/10.1016/j.ijhydene.2006.06.015
[95]      Liu, Y., Yu, P., Song, X., & Qu, Y. (2008). Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International Journal of Hydrogen Energy33(12), 2927-2933. https://doi.org/10.1016/j.ijhydene.2008.04.004
[96]      Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., & Ohmiya, K. (2001). Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. Journal of Bioscience and Bioengineering91(4), 339-343. https://doi.org/10.1016/S1389-1723(01)80148-1
[97]      Rambabu, K., Show, P. L., Bharath, G., Banat, F., Naushad, M., & Chang, J. S. (2020). Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. International Journal of Hydrogen Energy, 45(42), 22271-22280. https://doi.org/10.1016/j.ijhydene.2019.06.133
[98]      Singh, L., Wahid, Z. A., Siddiqui, M. F., Ahmad, A., Rahim, M. H. A., & Sakinah, M. (2013). Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. International Journal of Hydrogen Energy, 38(5), 2221-2229. https://doi.org/10.1016/j.ijhydene.2012.12.004
[99]      Magnusson, L., Cicek, N., Sparling, R., & Levin, D. (2009). Continuous hydrogen production during fermentation of α‐cellulose by the thermophillic bacterium Clostridium thermocellum. Biotechnology and Bioengineering, 102(3), 759-766. https://doi.org/10.1002/bit.22092
[101]    Lo, Y. C., Lu, W. C., Chen, C. Y., & Chang, J. S. (2010). Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium Butyricum CGS5. Bioresource Technology, 101(15), 5885-5891. https://doi.org/10.1016/j.biortech.2010.02.085
[102]    Ananthi, V., Ramesh, U., Balaji, P., Kumar, P., Govarthanan, M., & Arun, A. (2022). A review on the impact of various factors on biohydrogen production. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.046
[103]    Guo, X. M., Trably, E., Latrille, E., Carrère, H., & Steyer, J. P. (2010). Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 35(19), 10660-10673. https://doi.org/10.1016/j.ijhydene.2010.03.008
[104]    Ginkel, S. V., Sung, S., & Lay, J. J. (2001). Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 35(24), 4726-4730. https://doi.org/10.1021/es001979r
[105]    Grimmler, C., Janssen, H., Krauβe, D., Fischer, R. J., Bahl, H., Dürre, P., Liebl, W. & Ehrenreich, A. (2011). Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. Microbial Physiology, 20(1), 1-15. DOI: 10.1159/000320973
[106]    Sinha, P., & Pandey, A. (2011). An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy, 36(13), 7460-7478. https://doi.org/10.1016/j.ijhydene.2011.03.077
[107]    Davila-Vazquez, G., Arriaga, S., Alatriste-Mondragón, F., de León-Rodríguez, A., Rosales-Colunga, L. M., & Razo-Flores, E. (2008). Fermentative biohydrogen production: trends and perspectives. Reviews in Environmental Science and Bio/Technology, 7, 27-45. https://doi.org/10.1007/s11157-007-9122-7
[108]    Hamilton, C., Calusinska, M., Baptiste, S., Masset, J., Beckers, L., Thonart, P., & Hiligsmann, S. (2018). Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 43(11), 5451-5462. https://doi.org/10.1016/j.ijhydene.2017.12.162
[109]    Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., & Takasaki, Y. (1998). H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenesBiotechnology Letters20, 143-147. https://doi.org/10.1023/A:1005372323248
[110]    Mishra, P., & Das, D. (2014). Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. International Journal of Hydrogen Energy, 39(14), 7496-7507. https://doi.org/10.1016/j.ijhydene.2013.08.100
[111]    Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. International Journal of Hydrogen Energy39(23), 11920-11929. https://doi.org/10.1016/j.ijhydene.2014.06.027
[112]    Bakonyi, P., Nemestóthy, N., Lövitusz, É., & Bélafi-Bakó, K. (2011). Application of Plackett–Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE). International Journal of Hydrogen Energy, 36(21), 13949-13954. https://doi.org/10.1016/j.ijhydene.2011.03.062
[113]    Guerrero, K., Gallardo, R., Paredes, I., Quintero, J., Mau, S., Conejeros, R., Gentina, J. C.,  & Aroca, G. (2021). Continuous biohydrogen production by a degenerated strain of Clostridium acetobutylicum ATCC 824. International Journal of Hydrogen Energy, 46(7), 5100-5111. https://doi.org/10.1016/j.ijhydene.2020.11.104
[114]    Mahato, R. K., Kumar, D., & Rajagopalan, G. (2020). Biohydrogen production from fruit waste by Clostridium strain BOH3. Renewable Energy, 153, 1368-1377. https://doi.org/10.1016/j.renene.2020.02.092
[115]    Guerrero, K., Gallardo, R., Paredes, I., Quintero, J., Mau, S., Conejeros, R., Gentina, J. C.,  & Aroca, G. (2021). Continuous biohydrogen production by a degenerated strain of Clostridium acetobutylicum ATCC 824. International Journal of Hydrogen Energy, 46(7), 5100-5111. https://doi.org/10.1016/j.ijhydene.2020.11.104
[116]    Chung, K. T. (1976). Inhibitory effects of H2 on growth of Clostridium cellobioparum. Applied and Environmental Microbiology, 31(3), 342-348. https://doi.org/10.1128/aem.31.3.342-348.1976