مروری بر استفاده از کاتالیست‌های مبتنی‌بر پلاتین در فرایند تولید پروپیلن به‌روش هیدروژن‌زدایی مستقیم از پروپان

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، پژوهشگاه شیمی و مهندسی شیمی ایران

2 دانشیار مهندسی شیمی، پژوهشگاه شیمی و مهندسی شیمی ایران

چکیده

پروپیلن یک مادۀ استراتژیک برای تولید محصولات گوناگون مانند پلی‌پروپیلن، پلی‌اکریلونیتریل، آکرولئین و آکریلیکاسید است. پیش‌تر پروپیلن عمدتاً از روش کراکینگ کاتالیستی سیال و کراکینگ با بخار تولید می‌شد. باتوجهبه رشد چشم‌گیر تقاضا برای پروپیلن، تولید پروپیلن از روش هیدروژنزدایی مستقیم پروپان، نظر صنایع را به‌طور جدی به خود جلب کرده‌است. فرایند هیدروژنزدایی پروپان را شرکتهای گوناگونی تجاری کرده‌اند و مهمترین تفاوت در بین فناوری‌های مختلف، نوع راکتور و کاتالیست استفادهشده در فرایند است. کاتالیستهای مبتنیبر پلاتین از پر استفادهترین کاتالیست­ها در این فناوری‌ است و بهسبب قیمت بالای آن، در کاتالیستهای نسل جدید سعی شده‌است که کمترین میزان پلاتین در کاتالیست به‌کار برده شود، لذا این مقاله بر آن است که در ابتدا به‌طور کلی به فرایند هیدروژنزدایی پروپان و تبدیل آن به پروپیلن بپردازد، سپس کاتالیستهای مبتنی‌بر پلاتین را از لحاظ جایگاه‌های فعال، پایههای مورد استفاده و انواع ارتقادهنده­ها، برای افزایش بازدهی بررسی کند. در خاتمه، اختراع‌های مربوطبه تولید کاتالیستهای مبتنیبر پلاتین تشرکت UOP جمع آوری و بررسی شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Platinum-Based Catalysts in the Dehydrogenation of Propane to Propylene

نویسندگان [English]

  • F. Khanbolouk 1
  • F. Yazdani 2
1 Ph. D. Student of Chemical Engineering, Chemistry and Chemical Engineering Research Center of Iran (CCERCI)
2 Associate Professor of Chemical Engineering, Chemistry and Chemical Engineering Research
چکیده [English]

Propylene is an important feedstock for manufacturing various products such as polypropylene, polyacrylonitrile, acrolein, acrylic acid, and so forth. Formerly, propylene was typically produced by fluid catalytic cracking and steam cracking. Due to the significant demand growth for propylene, direct production methods of propylene from the propane dehydrogenation method have been highly noticed by industries.
The process of propane dehydrogenation has been commercialized by different companies and the most critical differences among different technologies are the type of reactor and their used catalyst. Platinum-based catalysts are the most widely used ones in this technology,
and due to their high price in new catalyst generation, it has been attempted to use the least amount of platinum in the catalyst. Therefore, this article discussed the process of dehydrogenation of propane to propylene in general, then the platinum-based should be examined in terms of active sites, bases used, and types of promoters to increase efficiency. In conclusion, the patents related to the production of platinum-based catalysts by UOP have been collected and discussed.

کلیدواژه‌ها [English]

  • Propylene
  • Propane Dehydrogenation
  • Platin-Based Catalysts
[1]        Chen, S., Pei, C., Sun, G., Zhao, Z.-J., & Gong, J. (2020). Nanostructured catalysts toward efficient propane dehydrogenation. Accounts of Materials Research, 1(pp. 30-40).
[2]        Hu, Z.-P., Yang, D., Wang, Z., & Yuan, Z.-Y. (2019). State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 40(pp. 1233-1254).
[3]        Dai, Y., Gao, X., Wang, Q., Wan, X., Zhou, C., & Yang, Y. (2021). Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 50(pp. 5590-5630).
[4]        Martino, M., Meloni, E., Festa, G., & Palma, V. (2021). Propylene synthesis: Recent advances in the use of Pt-based catalysts for propane dehydrogenation reaction. Catalysts, 11(pp.1070).
[5]        Docherty, S. R., Rochlitz, L., Payard, P.-A., & Copéret, C. (2021). Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chemical Society Reviews, 50(pp. 5806-5822). https://www.lummustechnology.com/Process-Technologies/Petrochemicals/Propylene Production. Available 10 October (2022). https://www.hydrocarbonprocessing.com/news/2020/09/honeywell-uop-oleflex-technology-continues-growth-in-china. Available 14 October (2022).
[6]        Zhao, Z.-J., Chiu, C.-c., & Gong, J. (2015). Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chemical Science, 6(pp. 4403-4425).
[7]        Otroshchenko, T., Jiang, G., Kondratenko, V. A., Rodemerck, U., & Kondratenko, E. V. (2021). Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chemical Society Reviews, 50(pp. 473-527).
[8]        Xu, Y., Wang, X., Yang, D., Tang, Z., Cao, M., Hu, H., & Lin, H. (2021). Stabilizing Oxygen Vacancies in ZrO2 by Ga2O3 Boosts the Direct Dehydrogenation of Light Alkanes. ACS Catalysis, 11(pp. 10159-10169).
[9]        Liu, J., Liu, Y., Liu, H., Fu, Y., Chen, Z., & Zhu, W. (2021). Silicalite‐1 Supported ZnO as an Efficient Catalyst for Direct Propane Dehydrogenation. ChemCatChem, 13(pp. 4780-4786).
[10]      Chin, S. Y., Hisyam, A., & Prasetiawan, H. (2016). Modeling and simulation study of an industrial radial moving bed reactor for propane dehydrogenation process. International Journal of Chemical Reactor Engineering, 14(pp. 33-44).
[11]      Li, C., & Wang, G. (2021). Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews, 50(pp. 4359-4381).
[12]      Otroshchenko, T., Sokolov, S., Stoyanova, M., Kondratenko, V. A., Rodemerck, U., Linke, D., & Kondratenko, E. V. (2015). ZrO2‐based alternatives to conventional propane dehydrogenation catalysts: active sites, design, and performance. Angewandte Chemie International Edition, 54(pp. 15880-15883).
[13]      Carter, J. H., Bere, T., Pitchers, J. R., Hewes, D. G., Vandegehuchte, B. D., Kiely, C. J., & Hutchings, G. J. (2021). Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chemistry, 23(pp. 9747-9799).
[14]      Chen, S., Chang, X., Sun, G., Zhang, T., Xu, Y., Wang, Y., Pei, C., & Gong, J. (2021). Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chemical Society Reviews, 50(pp. 3315-3354).
[15]      IHS Markit. (2015). Propane dehydrogenation process technologies. PEP Report A, 267.
[16]      Nawaz, Z. (2015). Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Reviews in Chemical Engineering, 31(pp. 413-436).
[17]      Wang, T., Jiang, F., Liu, G., Zeng, L., Zhao, Z. J., & Gong, J. (2016). Effects of Ga doping on Pt/CeO2‐Al2O3 catalysts for propane dehydrogenation. AIChE Journal, 62(pp. 4365-4376).
[18]      Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114(pp. 10613-10653).
[19]      Chen, J. Z., Talpade, A., Canning, G. A., Probus, P. R., Ribeiro, F. H., Datye, A. K., & Miller, J. T. (2021). Strong metal-support interaction (SMSI) of Pt/CeO2 and its effect on propane dehydrogenation. Catalysis Today, 371(pp. 4-10).
[20]      Deng, L., Zhou, Z., & Shishido, T. (2020). Behavior of active species on Pt-Sn/SiO2 catalyst during the dehydrogenation of propane and regeneration. Applied Catalysis A: General, 606(pp. 117826).
[21]      Ren, G.-Q., Pei, G.-X., Ren, Y.-J., Liu, K.-P., Chen, Z.-Q., Yang, J.-Y., & Zhang, T. (2018). Effect of group IB metals on the dehydrogenation of propane to propylene over anti-sintering Pt/MgAl2O4. Journal of Catalysis, 366(pp. 115-126).
[22]      Bocanegra, S. A., De Miguel, S. R., Castro, A. A., & Scelza, O. A. (2004). n-Butane dehydrogenation on PtSn supported on MAl2O4 (M: Mg or Zn) catalysts. Catalysis Letters, 96(pp. 129-14).
[23]      Ruelas-Leyva, J. P., Maldonado-Garcia, L. F., Talavera-Lopez, A., Santos-López, I. A., Picos-Corrales, L. A., Santolalla-Vargas, C. E., & Fuentes, G. A. (2021). A comprehensive study of coke deposits on a Pt-Sn/SBA-16 catalyst during the dehydrogenation of propane. Catalysts, 11(pp. 128).
[24]      Sun, X., Xue, J., Ren, Y., Li, X., Zhou, L., Li, B., & Zhao, Z. (2021). Catalytic Property and Stability of Subnanometer Pt Cluster on Carbon Nanotube in Direct Propane Dehydrogenation. Chinese Journal of Chemistry, 39(pp. 661-665).
[25]      Perechodjuk, A., Zhang, Y., Kondratenko, V. A., Rodemerck, U., Linke, D., Bartling, S., & Kondratenko, E. V. (2020). The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2-based catalysts in non-oxidative dehydrogenation of propane. Applied Catalysis A: General, 602(pp. 117731).
[26]      Chang, Q.-Y., Wang, K.-Q., Sui, Z.-J., Zhou, X.-G., Chen, D., Yuan, W.-K., & Zhu, Y.-A. (2021). Rational Design of Single-Atom-Doped Ga2O3 Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catalysis, 11(pp. 5135-5147).
[27]      Lee, M.-H., Nagaraja, B. M., Natarajan, P., Truong, N. T., Lee, K. Y., Yoon, S., & Jung, K.-D. (2016). Effect of potassium addition on bimetallic
PtSn/θ-Al2O3 catalyst for dehydrogenation of propane to propylene. Research on Chemical Intermediates, 42(pp. 123-140).
[28]      De Miguel, S. R., Bocanegra, S. A., Vilella, I., Guerrero-Ruiz, A., & Scelza, O. A. (2007). Characterization and catalytic performance of PtSn catalysts supported on Al2O3 and Na-doped Al2O3 in n-butane dehydrogenation. Catalysis Letters, 119(pp. 5-15).
[29]      Long, L. -L., Lang, W. -Z., Liu, X., Hu, C. -L., Chu, L. -F., & Guo, Y. -J. (2014). Improved catalytic stability of PtSnIn/xCa–Al catalysts for propane dehydrogenation to propylene. Chemical Engineering Journal, 257(pp. 209-217).
[30]      Xia, K., Lang, W.-Z., Li, P.-P., Yan, X., & Guo, Y.-J. (2016). The properties and catalytic performance of PtIn/Mg (Al) O catalysts for the propane dehydrogenation reaction: Effects of pH value in preparing Mg (Al) O supports by the co-precipitation method. Journal of Catalysis, 338(pp. 104-114).
[31]      Zhu, X., Wang, T., Xu, Z., Yue, Y., Lin, M., & Zhu, H. (2022). Pt-Sn clusters anchored at Al3+ penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. Journal of Energy Chemistry, 65(pp. 293-301).
[32]      Yu, Q., Yu, T., Chen, H., Fang, G., Pan, X., & Bao, X. (2020). The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. Journal of Energy Chemistry, 41(pp. 93-99).
[33]      Zhang, Y., Zhou, Y., Shi, J., Zhou, S., Sheng, X., & Zhang, Z. (2014). Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation. Journal of Molecular Catalysis A: Chemical, 381(pp. 138-147).
[34]      Xiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., & Datye, A. K. (2017). Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angewandte Chemie, 129(pp. 9114-9119).
[35]      Deng, L., Miura, H., Shishido, T., Hosokawa, S., Teramura, K., & Tanaka, T. (2017). Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: a catalytic interface for propane dehydrogenation. Chemical Communications, 53(pp. 6937-6940).
[36]      Zhu, J., Osuga, R., Ishikawa, R., Shibata, N., Ikuhara, Y., Kondo, J. N., & Liu, Z. (2020). Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation. Angewandte Chemie International Edition, 59(pp. 19669-19674).
[37]      Liu, L., Lopez-Haro, M., Lopes, C. W., Rojas-Buzo, S., Concepcion, P., Manzorro, R., & Calvino, J. J. (2020). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 3(pp. 628-638).
[38]      Sun, X., Han, P., Li, B., & Zhao, Z. (2018). Tunable catalytic performance of single Pt atom on doped graphene in direct dehydrogenation of propane by rational doping: A density functional theory study. The Journal of Physical Chemistry C, 122(pp. 1570-1576).
[39]      Li, Z., Yu, L., Milligan, C., Ma, T., Zhou, L., Cui, Y., & Luo, J. (2018). Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nature Communications, 9(pp. 1-8).
[40]        Delmon, B., & Froment, G. F. (1994). Catalyst Deactivation 1994, Proceedings of the 6th International Symposium. (p. 5).
[41]      Singh, J., Nelson, R. C., Vicente, B. C., Scott, S. L., & van Bokhoven, J. A. (2010). Electronic structure of alumina-supported monometallic Pt and bimetallic PtSn catalysts under hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 12(pp. 5668-5677).
[42]      Lezcano‐González, I., Cong, P., Campbell, E., Panchal, M., Agote‐Arán, M., Celorrio, V., & Beale, A. M. (2022). Structure‐Activity Relationships in Highly Active Platinum‐Tin MFI‐type Zeolite Catalysts for Propane Dehydrogenation. ChemCatChem, 14(pp. e202101828).
[43]      Deng, L., Miura, H., Shishido, T., Wang, Z., Hosokawa, S., Teramura, K., & Tanaka, T. (2018). Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. Journal of Catalysis, 365(pp. 277-291).
[44]      Sattler, A., Paccagnini, M., Liu, L., Gomez, E., Klutse, H., Burton, A. W., & Corma, A. (2021). Assessment of metal-metal interactions and catalytic behavior in platinum-tin bimetallic subnanometric clusters by using reactive characterizations. Journal of Catalysis, 404(pp. 393-399).
[45]      Nykanen, L., & Honkala, K. (2013). Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles. ACS Catalysis, 3(pp. 3026-3030).
[46]      Hook, A., & Celik, F. E. (2017). Predicting selectivity for ethane dehydrogenation and coke formation pathways over model pt–m surface alloys with ab initio and scaling methods. The Journal of Physical Chemistry C, 121(pp. 17882-17892).
[47]      Sricharoen, C., Jongsomjit, B., Panpranot, J., & Praserthdam, P. (2021). The key to catalytic stability on sol–gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation. Catalysis Today, 375(pp. 343-351).
[48]      Wang, J., Chang, X., Chen, S., Sun, G., Zhou, X., Vovk, E., & Mu, R. (2021). On the Role of Sn Segregation of Pt-Sn Catalysts for Propane Dehydrogenation. ACS Catalysis, 11(pp. 4401-4410).
[49]      Xu, Z., Yue, Y., Bao, X., & Zhu, H. (2019). Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catalysis, 10(pp. 818-828).
[50]      Cai, W., Mu, R., Zha, S., Sun, G., Chen, S., Zhao, Z. J., & Tao, F. (2018). Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Science Advances, 4(eaar5418).
[51]      Xiao, L., Ma, F., Zhu, Y. -A., Sui, Z. -J., Zhou, J. -H., Chen, D., & Yuan, W. -K. (2019). Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis. Chemical Engineering Journal, 377(pp. 120049).
[52]      Xie, L., Chai, Y., Sun, L., Dai, W., Wu, G., Guan, N., & Li, L. (2021). Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation. Journal of Energy Chemistry, 57(pp. 92-98).
[53]      Fan, X., Liu, D., Sun, X., Yu, X., Li, D., Yang, Y., & Xie, Z. (2020). Mn-doping induced changes in Pt dispersion and PtxMny alloying extent on Pt/Mn-DMSN catalyst with enhanced propane dehydrogenation stability. Journal of catalysis, 389(pp. 450-460).
[54]      Gao, X.-Q., Li, W.-C., Qiu, B., Sheng, J., Wu, F., & Lu, A.-H. (2022). Promotion effect of sulfur impurity in alumina support on propane dehydrogenation. Journal of Energy Chemistry, 70(pp. 332-339).
[55]      Sun, C., Luo, J., Cao, M., Zheng, P., Li, G., Bu, J., & Xie, X. (2018). A comparative study on different regeneration processes of Pt-Sn/γ-Al2O3 catalysts for propane dehydrogenation. Journal of energy chemistry, 27(pp. 311-318).
[56]      Long, L.-L., Xia, K., Lang, W.-Z., Shen, L.-L., Yang, Q., Yan, X., & Guo, Y.-J. (2017). The comparison and optimization of zirconia, alumina, and zirconia-alumina supported PtSnIn trimetallic catalysts for propane dehydrogenation reaction. Journal of Industrial and Engineering Chemistry, 51(pp. 271-280).
[57]      Li, J., Li, J., Zhao, Z., Fan, X., Liu, J., Wei, Y., & Liu, Q. (2017). Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. Journal of Catalysis, 352(pp. 361-370).
[58]      Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-confined Sn (IV/II) stabilizing raft-like Pt clusters: high selectivity and durability
in propane dehydrogenation. ACS Catalysis, 7(6973-6978).
[59]      Shen, L.-L., Xia, K., Lang, W.-Z., Chu, L.-F., Yan, X., & Guo, Y.-J. (2017). The effects of calcination temperature of support on PtIn/Mg (Al) O catalysts for propane dehydrogenation reaction. Chemical Engineering Journal, 324(pp. 336-346).
[60]      Searles, K., Chan, K. W., Mendes Burak, J. A., Zemlyanov, D., Safonova, O., & Copéret, C. (2018). Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites. Journal of the American Chemical Society, 140(pp. 11674-11679).
[61]      Sun, G., Zhao, Z.-J., Mu, R., Zha, S., Li, L., Chen, S., & Purdy, S. C. (2018). Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nature Communications, 9(pp. 1-9).
[62]      Zangeneh, F. T., Mehrazma, S., & Sahebdelfar, S. (2013). The influence of solvent on the performance of Pt–Sn/θ-Al2O3 propane dehydrogenation catalyst prepared by co-impregnation method. Fuel Processing Technology, 109(pp. 118-123).
[63]      Yu, C., Xu, H., Ge, Q., & Li, W. (2007). Additive effect of O2 on propane catalytic dehydrogenation to propylene over Pt-based catalysts in the presence of H2. Studies in Surface Science and Catalysis, Elsevier(pp. 325-330).
[64]      Qi, L., Babucci, M., Zhang, Y., Lund, A., Liu, L., Li, J., & Han, Y. (2021). Propane dehydrogenation catalyzed by isolated Pt atoms in SiOZn–OH nests in dealuminated zeolite beta. Journal of the American Chemical Society, 143(21364-21378).
[65]      Hannagan, R. T., Giannakakis, G., Reocreux, R., Schumann, J., Finzel, J., Wang, Y., & Flytzani-Stephanopoulos, M. (2021). First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science, 372(pp. 1444-1447).
[66]      Mohajeri Moghadam, K., & Khorashe, F. (2009). Deactivation model of Pt/Sn-Al2O3 catalyst in dehydrogenation process of light alkanes. 1st Petrochemical Seminar.
[67]      Tahriri Zangane, F., SahebdelFar, S., & Mehrazma, Sh. (2021). Investigation of the promoting effect of Zn on the performance of PtSnInLi/Al2O3 catalyst in the normal dehydrogenation of paraffins. 17th National Congress of Chemical Engineering.
[68]      Fatahi, M., Khorashe, F., SahebdelFar, S., & Ganji, K. (2011). Effects of water addition on the performance of platinum and tin industrial catalyst in propane dehydrogenation reaction. Iranian Journal of Chemistry and Chemical Engineering, 29(pp. 53-61).
[69]      Vladimir, H. (1952). Conversion of hydrocarbons with platinum composite catalyst. Universal Oil Products Co., U.S. Patent 2,602,772.
[70]      Bloch, H. S. (1969). Catalytic dehydrogenation of paraffinic hydrocarbons at high space velocity. Universal Oil Products Co., U.S. Patent 3,448,165.