تحلیل انرژی و اگزرژی سامانۀ فتوولتائیک حرارتی (PV/T) با جریان آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مهندسی مکانیک، پژوهشگاه صنعت نفت، تهران، ایران

2 کارشناس ارشد مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران غرب، تهران، ایران

3 کارشناس ارشد مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مطالعه عملکرد یک سامانۀ فتوولتائیک حرارتی خورشیدی بررسی شده‌‌است. مطالعۀ عددی با کدنویسی در نرم‌افزار متلب و با حل هم‌زمان معادلات مربوط‌به بخش الکتریکی و حرارتی انجام گرفته‌‌است که امکان انجام بررسی‌های مختلف برروی سامانه را فراهم می‌سازد. مطالعۀ عددی دارای سه بخش مطالعۀ مشخصه‌ای عوامل محیطی، عملکرد سامانه در یک روز و در یک سال است.با افزایش سرعت باد از صفر تا 14 متر بر ثانیه، بازده الکتریکی حدود 4% افزایش، بازده حرارتی حدود 22% کاهش و بازده کلی سامانه 18% کاهش می‌یابد؛ بنابراین امکان تغییرات شدیدی در عملکرد سامانه با تغییرات سرعت باد وجود دارد. با افزایش میزان تابش از 350 تا 1050 وات بر مترمربع بازده الکتریکی، حرارتی و بازده کلی به‌ترتیب 1% کاهش، 16% افزایش و 14 % افزایش را نشان می‌دهد. با فرض افزایش دمای محیط از 5 تا 60 درجۀ سلسیوس، بازده انرژی الکتریکی 5/2% کاهش، بازده حرارتی حدود 0.5% افزایش و بازده کلی حدود 2% کاهش می‌یابد. هم‌چنین، نتایج نشان می‌دهند که توان خروجی حرارتی سامانۀ فتوولتائیک حرارتی مورد بررسی بین 280 تا 460 وات و توان خروجی الکتریکی بین 120 تا 190 وات در طول سال تغییر می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy and Exergy Analysis of Photovoltaic Thermal System (PV/T) With Water Flow

نویسندگان [English]

  • M. Mazidi Sharfabadi 1
  • M. Rasaee 2
  • Narges Davoudi 3
1 Assistant Professor of Mechanical Engineering, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
2 M. Sc. Graduated of Mechanical Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
3 M. Sc. Graduated of Mechanical Engineering, Iran University of Science and Technology (IUST),
چکیده [English]

In this work, the performance of a solar system, in more detail, the thermal photovoltaic system is investigated. Numerical study has been done through coding in MATLAB software and by simultaneously solving equations related to the electrical and thermal parts, which provides the possibility of performing various investigations on the system. It is noteworthy that the PV part of this code, which is entirely accurate, can also use independently for photovoltaic systems. Numerical study has three features: parametric study, and collector performance in one day and in one year. As the wind speed increases from zero to 14 m/s, the electrical efficiency increases by about 4%, the thermal efficiency decreases by about 22%, and the overall efficiency of the system decreases by 18%; Therefore, there is a possibility of drastic changes in the performance of the system with changes in wind speed. By increasing the amount of radiation from 350 to 1050 W/m2, the electrical, thermal and overall efficiency shows a 1% decrease, 16% increase and 14% increase, respectively. Assuming an increase in the ambient temperature from 5 to 60 oC, the electrical efficiency decreases by 2.5%, the thermal efficiency increases by 0.5% and the overall efficiency decreases by 2%. Also, the results show that the thermal output power of the photovoltaic thermal system varies between 280 and 460 Watts and the electrical output power varies between 120 and 190 Watts throughout the year

کلیدواژه‌ها [English]

  • Solar Energy
  • Thermal Photovoltaic System
  • Energy and Exergy Analysis

مراجع

 
[1]        Mohaisen, H., Esfahani, J., & Ayani, M. B. (2021). Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy, 168, 170-180. https://doi.org/10.1016/j.renene.2020.12.056
[2]        Mohaisen, H. S., Esfahani, J. A., & Ayani, M. B. (2021). Effect of condensing cavity on the performance of a passive solar desalination system: an experimental study. Environmental Science and Pollution Research, 28, 5080-5091. https://doi.org/10.1007/s11356-020-10866-1
[3]        Ramos Cabal, A., Guarracino, I., Mellor, A., Alonso-Álvarez, D., Ekins-Daukes, N., & Markides, C. (2017). Solar-thermal and hybrid photovoltaic-thermal systems for renewable heating.
[4]        Barbu, M., Siroux, M., & Darie, G. (2021). Numerical model and parametric analysis of a liquid based hybrid photovoltaic thermal (PVT) collector. Energy Reports, 7, 7977-7988. https://doi.org/10.1016/j.egyr.2021.07.058
[5]        Kern Jr, E., & Russell, M. (1978). Combined photovoltaic and thermal hybrid collector systems.
[6]        Papoutsis, E., Koronaki, I., & Papaefthimiou, V. (2017). Numerical simulation and parametric study of different types of solar cooling systems under Mediterranean climatic conditions. Energy and Buildings, 138, 601-611. https://doi.org/10.1016/j. enbuild.2016.12.094.
[7]        Bombarda, P., Di Marcoberardino, G., Lucchini, A., Leva, S., Manzolini, G., Molinaroli, L., Pedranzini, F., & Simonetti, R. (2016). Thermal and electric performances of roll-bond flat plate applied to conventional PV modules for heat recovery. Applied Thermal Engineering, 105, 304-313. https://doi.org/ 10.1016/j.applthermaleng.2016.05.172.
[8]        Guo, J., & Zheng, L. (2017). Numerically study on a new hybrid photovoltaic thermal (PVT) collectors with natural circulation. Applied Solar Energy, 53, 316-321. https://doi.org/10.3103/S0003701X17040077.
[9]        Chow, T., Chan, A., Fong, K., Lo, W., & Song, C. (2005). Energy performance of a solar hybrid collector system in a multistory apartment building. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219(1), 1-11. https://doi.org/10.1243/095765005X6872.
[10]      Prabhakant, Agrawal, B., & Tiwari, G. (2010). Return on capital and earned carbon credit by hybrid solar Photovoltaic—wind turbine generators. Applied Solar Energy, 46, 33-45. https://doi.org/10.3103/S0003701X1001007X.
[11]      Agrawal, B., & Tiwari, G. (2010). Life cycle cost assessment of building integrated photovoltaic thermal (BIPVT) systems. Energy and Buildings, 42(9), 1472-1481. https://doi.org/10.1016/j.enbuild.2010.03.017.
[12]      Rejeb, O., Dhaou, H., & Jemni, A. (2015). Parameters effect analysis of a photovoltaic thermal collector: Case study for climatic conditions of Monastir, Tunisia. Energy Conversion and Management, 89, 409. https://doi.org/10.1016/j.enconman.2014.10.018.
[13]      Aste, N., Leonforte, F., & Del Pero, C. (2015). Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 112, 85-99. https://doi.org/10.1016/j.solener.2014.11.025.
[14]      Sharfabadi, M., Ghiasi, M., & Seraj, A. (2021). Energy and Exergy Analysis of 190 W Photovoltaic Cell. Mechanical Engineering, 21(11), 743-755.
[15]      Touafek, K., Haddadi, M., & Malek, A. (2013). Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production. Energy and Buildings, 59, 21-28. https://doi.org/10.1016/j.enbuild.2012.10.037.
[16]      Luijten, C., & Kerkhof, E. (2011). Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy Conversion and Management, 52(2), 1426-1438. https://doi.org/10.1016/j.enconman.2010.10.005
[17]      İlhan Volkan, Ö., M. K. YEŞİLYURT, E. Ç. YILMAZ, and  ÖMEROĞLU, G. (2016). Photovoltaic thermal (PVT) solar panels. International journal of new technology and research, 2016. 2(12): 13-16.