روش‌های کنترل انتقال حرارت در منسوجات تنظیم‌کنندۀ دما

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، دانشگاه صنعتی اصفهان

2 کارشناس مهندسی مواد، دانشگاه یزد

3 دانشجوی کارشناسی شیمی، دانشگاه یزد

4 کارشناس ارشد شیمی، دانشگاه یزد

5 دانشجوی دکتری شیمی، دانشگاه یزد

6 استادیار مهندسی نساجی، دانشگاه یزد

چکیده

آسایش حرارتی، یکی از مشخصه‌‌‌های مهم و مؤثر بر سلامتی و کارایی بدن انسان است که منسوجات در تأمین این مشخصه‌ نقش به‌سزایی دارند. در این راستا منسوجات مهندسی‌شدۀ بسیاری با تنظیم سازوکار‌‌های مختلف حرارتی پیشنهاد شدهاست. در مطالعۀ حاضر، پیشرفت‌‌‌‌های اخیر در زمینۀ کنترل فعال و غیر فعال دما (منسوجات گرمکننده، سردکننده و دوحالته) با تأکید بر سازوکار مؤثر بر انتقال حرارت در منسوج مورد نظر،بیان شدهاست. درپایان، روشهای بهکار گرفته‌شده، مقایسه و به چالش‌ها و فرصتهای موجود در این زمینه اشاره شدهاست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On the Heat Transfer Control Methods in Temperature Regulating Textiles

نویسندگان [English]

  • Z. Zarezade 1
  • A. Beshart 2
  • M. Atighi 3
  • Sh. Zohari 4
  • Z. Alizadeh 5
  • M. Hasanzadeh 6
1 Ph. D. Student of Chemical Engineering, Isfahan University of Technology
2 B. Sc. in Materials Engineering, Yazd University
3 B. Sc. in Textile Engineering, Yazd University
4 M. Sc. in Chemistry, Yazd University
5 Ph. D. Student of Chemistry, Yazd University
6 Assistant Professor of Textile Engineering, Yazd University
چکیده [English]

Thermal comfort is one of the important and effective parameters on the health and efficiency of the human body, and textiles play a significant role in providing this parameter. In this regard, many engineered textiles have been proposed by adjusting different thermal mechanisms. In the present study, the recent developments in the field of active and passive temperature control (heating, cooling and two-mode textiles) have been expressed with emphasis on the effective mechanism of heat transfer in the desired textile. Finally, the used methods are compared and the challenges and opportunities in this field are pointed out.

کلیدواژه‌ها [English]

  • Smart Textile
  • Heat Transfer
  • Radiation
  • Thermal Conductivity
  • Phase Change Material
  • Shape Memory Material

 

[1]        Abbas, A., Zhao, Y., Wang, X., & Lin, T. (2013). Cooling effect of MWCNT-containing composite coatings on cotton fabrics. Journal of The Textile Institute, 104(8), 798-807.
[2]        Cai, L., Song, A. Y., Li, W., Hsu, P. C., Lin, D., Catrysse, P. B., ... & Cui, Y. (2018). Spectrally selective nanocomposite textile for outdoor personal cooling. Advanced Materials, 30(35), 1802152.
[3]        Cui, Y., Gong, H., Wang, Y., Li, D., & Bai, H. (2018). A thermally insulating textile inspired by polar bear hair. Advanced Materials, 30(14), 1706807.
[4]        Farhang Dehghan, S., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., & Hasanzadeh, M. (2015). Effect of Single-walled Carbon Nanotubes on the Porosity of Nonwoven Nanofiber Filter Media.
[5]        Feng, W., Zhang, Y. S., Shao, Y. W., Huang, T., Zhang, N., Yang, J. H., ... & Wang, Y. (2021). Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal, 145, 110245.
[6]        Fu, K., Yang, Z., Pei, Y., Wang, Y., Xu, B., Wang, Y.,... & Hu, L. (2019). Designing textile architectures for high energy-efficiency human body sweat-and cooling-management. Advanced Fiber Materials, 1, 61-70.
[7]        Gao, T., Yang, Z., Chen, C., Li, Y., Fu, K., Dai, J., ... & Hu, L. (2017). Three-dimensional printed thermal regulation textiles. ACS nano, 11(11), 11513-11520.
[8]        Gök, M. O., Bilir, M. Z., & Gürcüm, B. H. (2015). Shape-memory applications in textile design. Procedia-Social and Behavioral Sciences, 195, 2160-2169.
[9]        Haghighat, F., Ravandi, S. A. H., Esfahany, M. N., Valipouri, A., & Zarezade, Z. (2019). Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Applied Thermal Engineering, 161, 113924.
[10]      Hasanzadeh, M., Mottaghitalab, V., Ansari, R., Moghadam, B. H., & Haghi, A. K. (2015). Issues in production of carbon nanotubes and related nanocomposites: A comprehensive review. Cell. Chem. Technol, 49, 237-257.
[11]      Hsu, P. C., Liu, C., Song, A. Y., Zhang, Z., Peng, Y., Xie, J., ... & Cui, Y. (2017). A dual-mode textile for human body radiative heating and cooling. Science advances, 3(11), e1700895.
[12]      Hsu, P. C., Song, A. Y., Catrysse, P. B., Liu, C., Peng, Y., Xie, J., ... & Cui, Y. (2016). Radiative human body cooling by nanoporous polyethylene textile. Science, 353(6303), 1019-1023.
[13]      Jabbari, M., Åkesson, D., Skrifvars, M., & Taherzadeh, M. J. (2015). Novel lightweight and highly thermally insulative silica aerogel-doped poly (vinyl chloride)-coated fabric composite. Journal of Reinforced Plastics and Composites, 34(19), 1581-1592.
[14]      Karaszewska, A., Kamińska, I., Nejman, A., Gajdzicki, B., Fortuniak, W., Chojnowski, J., ... & Sowinski, P. (2019). Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer. Materials Chemistry and Physics, 226, 204-213.
[15]      Khalili, A., Mottaghitalab, A., Hasanzadeh, M., & Mottaghitalab, V. (2017). Rejection of far infrared radiation from the human body using Cu–Ni–P–Ni nanocomposite electroless plated PET fabric. International Journal of Industrial Chemistry, 8, 109-120.
[16]      Kim, G., Park, K., Hwang, K., Choi, C., Zheng, Z., Seydel, R., ... & Jin, S. (2021). Black textile with bottom metallized surface having enhanced radiative cooling under solar irradiation. Nano Energy, 82, 105715.
[17]      Lan, X., Wang, Y., Peng, J., Si, Y., Ren, J., Ding, B., & Li, B. (2021). Designing heat transfer pathways for advanced thermoregulatory textiles. Materials Today Physics, 17, 100342.
[18]      Leng, J., Lan, X., Liu, Y., & Du, S. (2011). Shape-memory polymers and their composites: stimulus methods and applications. Progress in Materials Science, 56(7), 1077-1135.
[19]      Liu, Z., Lyu, J., Fang, D., & Zhang, X. (2019). Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. Acs Nano, 13(5), 5703-5711.
[20]      Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., ... & Xu, G. (2019). Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chemical Engineering Journal, 355, 532-539.
[21]      Miao, D., Cheng, N., Wang, X., Yu, J., & Ding, B. (2022). Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Letters, 22(2), 680-687.
[22]      Mikołajczyk, Z., & Szałek, A. (2022). Analysis of newborn thermal comfort in a textile incubator. The Journal of The Textile Institute, 113(8), 1521-1530.
[23]      Moghadam, B. H., Haghi, A. K., Kasaei, S., & Hasanzadeh, M. (2015). Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods. Journal of Macromolecular Science, Part B, 54(11), 1404-1425.
[24]      Mondal, S. (2008). Phase change materials for smart textiles–An overview. Applied thermal engineering, 28(11-12), 1536-1550.
[25]      Peng, Y., Chen, J., Song, A. Y., Catrysse, P. B., Hsu, P. C., Cai, L., ... & Cui, Y. (2018). Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature sustainability, 1(2), 105-112.
[26]      Peng, Y., & Cui, Y. (2020). Advanced textiles for personal thermal management and energy. Joule, 4(4), 724-742.
[27]      Peng, Y., Lee, H. K., Wu, D. S., & Cui, Y. (2022). Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering, 10, 167-173.
[28]      Peng, Y., Li, W., Liu, B., Jin, W., Schaadt, J., Tang, J., ... & Cui, Y. (2021). Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature communications, 12(1), 6122.
[29]      Qi, B., Wang, F., Chen, Q., Xu, B., Wang, P., Man, Z., ... & Wang, Q. (2021). Green Constructing an Intelligent Temperature-Regulating Fabric with Multiple Heat-Transfer Capabilities.
[30]      Qi, X., Dong, Y., Islam, M. Z., Zhu, Y., Fu, Y., & Fu, S. Y. (2021). Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Composites Science and Technology, 203, 108609.
[31]      Rezvanpour, M., Hasanzadeh, M., Azizi, D., Rezvanpour, A., & Alizadeh, M. (2018). Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Materials Chemistry and Physics, 215, 299-304.
[32]      Sánchez, P., Sánchez-Fernandez, M. V., Romero, A., Rodríguez, J. F., & Sánchez-Silva, L. (2010). Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochimica Acta, 498(1-2), 16-21.
[33]      Sarier, N., Onder, E., & Ukuser, G. (2015). Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochimica Acta, 613, 17-27.
[34]      Song, Y. N., Lei, M. Q., Lei, J., & Li, Z. M. (2020). Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Materials Today Energy, 18, 100504.
[35]      Song, Y. N., Li, Y., Yan, D. X., Lei, J., & Li, Z. M. (2020). Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Composites Part A: Applied Science and Manufacturing, 130, 105738.
[36]      Taherkhani, A., & Hasanzadeh, M. (2018). Durable flame retardant finishing of cotton fabrics with poly (amidoamine) dendrimer using citric acid. Materials Chemistry and Physics, 219, 425-432.
[37]      Wang, Y., Shou, D., Shang, S., Chiu, K. L., & Jiang, S. (2021). Cooling performance of a bioinspired micro-crystal-bars coated composite fabric with solar reflectance. Composites Communications, 27, 100814.
[38]      Wei, W., Zhu, Y., Li, Q., Cheng, Z., Yao, Y., Zhao, Q., ... & Gao, Y. (2020). An Al2O3-cellulose acetate-coated textile for human body cooling. Solar Energy Materials and Solar Cells, 211, 110525.
[39]      Wong, A., Daoud, W. A., Liang, H. H., & Szeto, Y. S. (2015). Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Solar Energy Materials and Solar Cells, 134, 425-437.
[40]      Wu, J., Hu, R., Zeng, S., Xi, W., Huang, S., Deng, J., & Tao, G. (2020). Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS applied materials & interfaces, 12(16), 19015-19022.
[41]      Xie, X., Liu, Y., Zhu, Y., Xu, Z., Liu, Y., Ge, D., & Yang, L. (2022). Enhanced IR radiative cooling of silver coated PA textile. Polymers, 14(1), 147.
[42]      Yue, X., Zhang, T., Yang, D., Qiu, F., Wei, G., & Zhou, H. (2019). Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy, 63, 103808.
[43]      Zhang, X. A., Yu, S., Xu, B., Li, M., Peng, Z., Wang, Y., ... & Wang, Y. (2019). Dynamic gating of infrared radiation in a textile. Science, 363(6427), 619-623.
[44]      Zhao, D., Lu, X., Fan, T., Wu, Y. S., Lou, L., Wang, Q., ... & Yang, R. (2018). Personal thermal management using portable thermoelectrics for potential building energy saving. Applied Energy, 218, 282-291.
[45]      Zhong, Y., Zhang, F., Wang, M., Gardner, C. J., Kim, G., Liu, Y., ... & Chen, R. (2017). Reversible humidity sensitive clothing for personal thermoregulation. Scientific reports, 7(1), 44208.