ارزیابی عملکرد نانوذراتMnFe2O4 عامل‌دارشده با-N فسفونومتیل آمینو دی‌استیک اسید به‌عنوان یک نانوجاذب مغناطیسی مؤثر به‌‌منظور حذف یون‌های نیکل (II)، سرب (II) و وانادیوم (V) از محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار شیمی، پژوهشگاه نیرو

2 دانشیار شیمی، پژوهشگاه ابن سینا

چکیده

آلودگی آب و خاک با یون­های فلزی سنگین برای محیط زیست و سلامتی بشر خطرها و تهدیدهای جدی ایجاد می­ کند؛ لذا یافتن راهکاری مؤثر برای حذف این فلزها بسیار مهم است. در پژوهش حاضر، ابتدا نانوذرات مغناطیسی عامل دارشدۀ سطحی با N-فسفونومتیل آمینو دی‌استیک اسید سنتز و سپس خصوصیات این نانوذرات شناسایی شدند. سپس عملکرد این نانوجاذب سنتزی در حذف یون­های نیکل (II)، سرب (II) و وانادیوم (V) از محلول­های آبی با بررسی مشخصه‌های مختلف هم‌چون مقدار جاذب، اثر زمان تماس بر میزان جذب و اثر pH ارزیابی شد. نتایج نشان می­د­هد که با افزایش میزان pH، بازده جذب افزایش­ می‌یابد و بهترین عملکرد جاذب در فرایند جذبی یون­های نیکل (II)، وانادیوم (V) در 7-6=pH و سرب (II) در 5/5-5=pH مشاهده شد. ایزوترم­های جذب یون­های فلزی با مدل­های لانگمویر و فرندلیچ، بررسی و ارزیابی شد. علاوه‌بر این قابلیت بازیافت و بازاستفادۀ جاذب نشان می­دهد که این جاذب به­راحتی با به‌کارگیری یک مگنت مغناطیسی قابل جداسازی و بدون کاهش جدی در فعالیت قابل استفاده در چرخه­های متوالی جذب- واجذب یون‌های فلزی است. ظرفیت جذبی عالی به‌دلیل گروه­های کربوکسیلیک اسید و هترواتمی سطحی، به‌کارگیری از مقادیر کم جاذب به‌منظور بیشینۀ ظرفیت جذب، آسانی سنتز، عملکرد جذبی در دمای محیط، قابلیت بازیافت و استفادۀ مجدد از ویژگی‌های بارز نانوجاذب سنتزی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Performance of MnFe2O4 Nanoparticles Functionalized with N-Phosphonomethyl Amino Diacetic Acid as an Effective Magnetic Nanosorbent for the Removal of Ni(II), Pb(II), V(V) Ions from Aqueous Solutions

نویسندگان [English]

  • M. Esmaeilpour 1
  • M. Ghahraman Afshar 1
  • Z. Noroozi Tisseh 1
  • R. Ghahremanzadeh 2
1 Assistant Professor of Chemistry, Niroo Research Institute
2 Associate Professor of Chemistry, Avicenna Research Institute, ACECR
چکیده [English]

Contamination of soil and water with heavy metal ions poses serious dangers and threats to the environment and human health, therefore it is very important to find an effective solution to remove these heavy metals from water. In this study, surface modified magnetic nanoparticles by N-phosphono-methylamino - diacetic acid with a core-shell structure were first synthesized. These nanoparticles were characterized.
The performance of this synthetic nanoadsorbent for removing nickel (II), lead (II) and vanadium (V) ions from aqueous solutions was evaluated by various parameters such as adsorbent amount, contact time effect on adsorption rate and pH effect. The results show that the adsorption efficiency increases with raising pH and the best adsorbent performance in the adsorption process of nickel (II), vanadium (V) ions at pH = 6-7 and lead (II) at pH = 5-5.5 was observed. Also, the adsorption data were analyzed by the Langmuir and Freundlich isotherm model. In addition, the recyclability and reuse of the adsorbent shows that the adsorbent can be easily separated by using a magnetic magnet without any significant reduction in activity that can be used in successive metal ion adsorption-desorption cycles.

کلیدواژه‌ها [English]

  • MnFe2O4 @ SiO2 Nanoparticles
  • N-Phosphono-Methylamino-Diacetic Acid
  • Magnetic Nanosorbent
  • Heavy Metal Ions
  • Effective Removal

 

[1]        Zhong, L. S., Hu, J. S., Cao, A. M., Liu, Q., Song, W. G., & Wan, L. J. (2007). 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chemistry of Materials, 19(7): 1648-1655.
[2]        Rajput, S., Pittman Jr, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of colloid and interface science, 468: 334-346.
[3]        Soleimani, M., Mahmodi, M. S., Morsali, A., Khani, A., & Afshar, M. G. (2011). Using a new ligand for solid phase extraction of mercury. Journal of hazardous materials, 189(1-2): 371-376.
[4]        Ghahraman Afshar, M., Esmaeilpour, M., & Faghihi, M. (2023). Technical-economic evaluation of the proposed solutions to modify the pattern of water consumption in Tarasht power plant. Journal of Iranian Chemical Engineering. doi:10.22034/ijche.2023.369608.1252
[5]        Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3): 407-418.
[6]        Kurniawan, T. A., Chan, G. Y., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical engineering journal, 118(1-2): 83-98.
[7]        Cavaco, S. A., Fernandes, S., Quina, M. M., & Ferreira, L. M. (2007). Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of hazardous materials, 144(3): 634-638.
[8]        Kumari, M., Pittman Jr, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of colloid and interface science, 442: 120-132.
[9]        Chakraborty, S., Dasgupta, J., Farooq, U., Sikder, J., Drioli, E., & Curcio, S. (2014). Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. Journal of membrane science, 456: 139-154.
[10]      Sultana, M.-Y., Akratos, C. S., Pavlou, S., & Vayenas, D. V. (2014). Chromium removal in constructed wetlands: a review. International Biodeterioration & Biodegradation, 96: 181-190.
[11]      Doke, S. M., & Yadav, G. D. (2014). Process efficacy and novelty of titania membrane prepared by polymeric sol–gel method in removal of chromium (VI) by surfactant enhanced microfiltration. Chemical engineering journal, 255: 483-491.
[12]      Neel, B., Ghahraman Asfhar, M., Crespo, G. A., Pawlak, M., Dorokhin, D., & Bakker, E. (2014). Nitrite‐Selective Electrode Based On Cobalt (II)
tert‐Butyl‐Salophen Ionophore. Electroanalysis, 26(3): 473-480.
[13]      Gupta, V., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical engineering journal, 180: 81-90.
[14]      Neeraj, G., Krishnan, S., Kumar, P. S., Shriaishvarya, K. R., & Kumar, V. V. (2016). Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. Journal of Molecular Liquids, 214: 335-346.
[15]      Soleimani, M., & Afshar, M. G. (2014). Octaethylporphyrin as an ionophore for aluminum potentiometric sensor based on carbon paste electrode. Russian Journal of Electrochemistry, 50: 554-560.
[16]      Nassar, N. N. (2010). Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of hazardous materials, 184(1-3): 538-546.
[17]      Soleimani, M., Afshar, M. G., & Ganjali, M. R. (2013). High selective methadone sensor based on molecularly imprinted polymer carbon paste electrode modified with carbon nanotubes. Sensor Letters, 11(10): 1983-1991.
[18]      Ghahraman Afshar, M. & Esmaeilpour, M. (2023). Preparation, characterization, and adsorption properties of bis-salophen schiff base ligand immobilized on Fe3O4@SiO2 nanoparticles for removal of cadmium(II) from aqueous solutions. Journal of Iranian Chemical Engineering. doi:10.22034/ijche.2023.359408.1233
[19]      Nethaji, S., Sivasamy, A., & Mandal, A. (2013). Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr (VI). Bioresource technology, 134: 94-100.
[20]      Ghahraman Afshar, M., Azimi, M., Habibi & N., Esmaeilpour, M. (2023). Providing operatial solution to reduce water consumption of cooling water cycle of Montazer Ghaem power plant by chemical modification of clarifier water. Journal of Iranian Chemical Engineering. doi:10.22034/ijche.2023.405752.1331
[21]      Li, K., Wang, Y., Huang, M., Yan, H., Yang, H., Xiao, S., & Li, A. (2015). Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water. Journal of colloid and interface science, 455: 261-270.
[22]      Javidi, J., Esmaeilpour, M., Rahiminezhad, Z., & Dodeji, F. N. (2014). Synthesis and characterization of H3PW12O40 and H3PMo12O40 nanoparticles by a simple method. Journal of Cluster Science, 25: 1511-1524.
[23]      Dindarloo Inaloo, I., Esmaeilpour, M., Majnooni, S., & Reza Oveisi, A. (2020). Nickel‐Catalyzed Synthesis of N‐(Hetero) Aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem, 12(21): 5486-5491.
[24]      Ekrami, E., Pouresmaieli, M., sadat Hashemiyoon, E., Noorbakhsh, N., & Mahmoudifard, M. (2022). Nanotechnology: a sustainable solution for heavy metals remediation. Environmental Nanotechnology. Monitoring & Management, 18: 100718.
[25]      He, R., Li, L., Zhang, T., Ding, X., Xing, Y., Zhu, S., ... Hu, H. (2023). Recent advances of nanotechnology application in autoimmune diseases–A bibliometric analysis. Nano Today, 48: 101694.
[26]      He, D., Garg, S., & Waite, T. D. (2012). H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. Langmuir, 28(27): 10266-10275.
[27]      Inaloo, I. D., Majnooni, S., & Esmaeilpour, M. (2018). Superparamagnetic Fe3O4 nanoparticles in a deep eutectic solvent: an efficient and recyclable catalytic system for the synthesis of primary carbamates and monosubstituted ureas. European Journal of Organic Chemistry, 2018(26): 3481-3488.
[28]      Chavan, N., Dharmaraj, D., Sarap, S., & Surve, C. (2022). Magnetic nanoparticles–A new era in nanotechnology. Journal of Drug Delivery Science and Technology: 103899.
[29]      Cao, G., Wang, W., & Du, A. (2023). Simulation of the AC susceptibility for a core–shell magnetic nanoparticle. Journal of Magnetism and Magnetic Materials, 565: 170144.
[30]      Hu, P., Morabito, J. V., & Tsung, C.-K. (2014). Core–shell catalysts of metal nanoparticle core and metal–organic framework shell. Acs Catalysis, 4(12): 4409-4419.
[31]      Lu, A. H., Salabas, E. e. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8): 1222-1244.
[32]      Park, C. P., & Kim, D. P. (2010). A microchemical system with continuous recovery and recirculation of catalyst-immobilized magnetic particles. Angew. Chem. Int. Ed, 49: 6825-6829.
[33]      Sardarian, A. R., Eslahi, H., & Esmaeilpour, M. (2018). Copper (II) complex supported on Fe3O4@ SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N‐arylation of amines and N (H)‐heterocycles and green synthesis of 1H‐tetrazoles. ChemistrySelect, 3(5): 1499-1511.
[34]      Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials, 26(18): 3995-4021.
[3]5      Mounkachi, O., Lamouri, R., Salmani, E., Hamedoun, M., Benyoussef, A., & Ez-Zahraouy, H. (2021). Origin of the magnetic properties of MnFe2O4 spinel ferrite: Ab initio and Monte Carlo simulation. Journal of Magnetism and Magnetic Materials, 533: 168016.
[36]      Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application-A review. Journal of Industrial and Engineering Chemistry, 103: 292-304.
[37]      Liu, Z., Chen, G., Hu, F., & Li, X. (2020). Synthesis of mesoporous magnetic MnFe2O4@ CS-SiO2 microsphere and its adsorption performance of Zn2+ and MB studies. Journal of environmental management, 263: 110377.
[38]      Rashid, Z., Naeimi, H., Zarnani, A. -H., Nazari, M., Nejadmoghaddam, M. -R., & Ghahremanzadeh, R. (2016). Fast and highly efficient purification of 6× histidine-tagged recombinant proteins by Ni-decorated MnFe2O4@SiO2@NH2@2AB as novel and efficient affinity adsorbent magnetic nanoparticles. RSC Advances, 6(43): 36840-36848.
[39]      Mozafari, R., & Heidarizadeh, F. (2019). Phosphotungstic acid supported on SiO2@ NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo [b] pyran and indazolo [2, 1-b] phthalazine-triones. Polyhedron, 162: 263-276.
[40]      Dippong, T., Levei, E. A., Goga, F., & Cadar, O. (2021). Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Materials Characterization, 172: 110835.
[41]      Esmaeilpour, M., Sardarian, A. R., & Firouzabadi, H. (2018). Theophylline supported on modified silica‐coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one‐Pot synthesis of spirooxindoles and phenazines. ChemistrySelect, 3(32): 9236-9248.
[42]      Rashid, Z., Soleimani, M., Ghahremanzadeh, R., Vossoughi, M., & Esmaeili, E. (2017). Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization. Applied Surface Science, 426: 1023-1029.
[43]      Fuat, G., & Cumali, Y. (2021). Synthesis, characterization, and lead (II) sorption performance of a new magnetic separable composite: MnFe2O4@ wild plants-derived biochar. Journal of Environmental Chemical Engineering, 9(1): 104567.
[44]      Eyvazi, B., Jamshidi-Zanjani, A., & Darban, A. K. (2020). Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: A comprehensive study. Environmental Pollution, 265: 113685.
[45]      Asghar, K., Qasim, M., & Das, D. (2020). Preparation and characterization of mesoporous magnetic MnFe2O4@mSiO2 nanocomposite for drug delivery application. Materials Today: Proceedings, 26: 87-93.
[46]      Malakootikhah, J., Rezayan, A. H., Negahdari, B., Nasseri, S., & Rastegar, H. (2018). Porous MnFe2O4@SiO2 magnetic glycopolymer: A multivalent nanostructure for efficient removal of bacteria from aqueous solution. Ecotoxicology and Environmental Safety, 166: 277-284.
[47]      Sardarian, A., Kazemnejadi, M., & Esmaeilpour, M. (2021). Functionalization of superparamagnetic Fe3O4@SiO2 nanoparticles with a Cu (II) binuclear Schiff base complex as an efficient and reusable nanomagnetic catalyst for N‐arylation of α‐amino acids and nitrogen‐containing heterocycles with aryl halides. Applied Organometallic Chemistry, 35(1): e6051.
[48]      Esmaeilpour, M., Sardarian, A. R., & Firouzabadi, H. (2018). Dendrimer‐encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles as a novel recyclable catalyst for N‐arylation of nitrogen heterocycles and green synthesis of 5‐substituted 1H‐tetrazoles. Applied Organometallic Chemistry, 32(4): e4300.
[49]      Li, N., Fu, F., Lu, J., Ding, Z., Tang, B., & Pang, J. (2017). Facile preparation of magnetic mesoporous MnFe2O4@SiO2−CTAB composites for Cr(VI) adsorption and reduction. Environmental Pollution, 220: 1376-1385.
[50]      Li, M., Li, M. Y., Feng, C.G., & Zeng, Q. X. (2014). Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu(II), Cd(II), Ni(II) and Zn(II) from aqueous solution. Applied Surface Science, 314: 1063-1069.
[51]      Panneerselvam, P., Morad, N., & Tan, K. A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. Journal of hazardous materials, 186(1): 160-168.
[52]      Gupta, V. K., Nayak, A., Agarwal, S., Chaudhary, M., & Tyagi, I. (2014). Removal of Ni(II) ions from water using scrap tire. Journal of Molecular Liquids, 190: 215-222.
[53]      Repo, E., Kurniawan, T. A., Warchol, J. K., & Sillanpää, M. E. (2009). Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of hazardous materials, 171(1-3): 1071-1080.
[54]      Nassar, N. N. (2012). Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. The Canadian Journal of Chemical Engineering, 90(5): 1231-1238.
[55]      Kalantari, K., Ahmad, M. B., Masoumi, H. R. F., Shameli, K., Basri, M., & Khandanlou, R. (2015). Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. Journal of the Taiwan institute of Chemical Engineers, 49: 192-198.