تولید و تأثیر اسیدفسفریک (H3PO4) بر ویژگی‌های کربن فعال حاصل از چوب درخت انجیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی عمران، دانشگاه یاسوج

2 استادیار مهندسی عمران، دانشگاه یاسوج

3 استاد شیمی، دانشگاه یاسوج

4 استادیار زیست‌شناسی، دانشگاه یاسوج

5 استادیار مهندسی شیمی، دانشگاه یاسوج

چکیده

تولید کربن فعال با استفاده‌‌از ضایعات کشاورزی به‌دلیل ارزان و در دسترس بودن می­ تواند از هزینه‌های تولید بکاهد. در این پژوهش، کربن فعال از چوب درخت انجیر تولید شد. فعال‌سازی با استفاده از اسیدفسفریک با نسبت 1:5 در دمای 450 درجۀ سلسیوس انجام پذیرفت. خواص و ویژگی‌های کربن فعال با استفاده از آنالیز درصد بازده و خاکستر، آنالیز FTIR، آنالیز BET و آنالیز SEM به‌دست آمد. درصدهای بازده و خاکستر، سطح ویژه و حجم منافذ کل به‌ترتیب 57.17 و
2.3 درصد،
(m2/g)1004 و (cm3/g)0.844 به‌دست آمد. براساس آنالیز جذب و واجذب، کربن فعال به دو نوع I و II با ترکیبی از میکروحفره و مزوحفره طبقه‌بندی ‌شد. گروه‌های عاملی کربن فعال ازجمله گروه‌های کربوکسیلیک اسید، فنولی و غیره مشاهده شد؛ نتایج آنالیز SEM نشان‌دهندۀ ساختار میکروحفره با ریزحفرات فراوان بوده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production and Effect of Phosphoric Acid (H3PO4) on the Properties of Activated Carbon Obtained from Fig Wood

نویسندگان [English]

  • M. Khaze 1
  • M. Fazeli 2
  • M. Ghaedi 3
  • A. S. Javanmard 4
  • Hakimeh Sharififard 5
1 M. Sc. in Civil Engineering, Yasouj University
2 Assistant Professor of Civil Engineering, Yasouj University
3 Professor of Chemistry, Yasouj University
4 Assistant Professor of Biology, Yasouj University
5 Assistant Professor of Chemical Engineering, Yasouj University
چکیده [English]

Production of activated carbon by using agricultural wastage can greatly reduce production costs due to its cheapness and availability. In this study, activated carbon was produced using fig wood. Activation was performed using phosphoric acid with a ratio of 1:5 at 450°C. Activated carbon properties were obtained by using percentage yield and ash analysis, FTIR analysis, BET analysis, and SEM analysis.
The percentages of yield and ash, the specific area and the total pore volume were 57.17%, 2.3%, 1004 (m2/g) and 0.844 (cm3/g) respectively. Based on adsorption-desorption analysis, the activated carbon was classified as two types I and II, with a combination of micropores and mesopores. The functional groups of activated carbon, including carboxylic acid, phenolic groups, etc., were found. The results of SEM analysis showed a microporous structure with frequent micropores.

 

کلیدواژه‌ها [English]

  • Activated Carbon
  • Agricultural Waste
  • Fig Wood
  • FTIR Analysis
  • BET Analysis
  • SEM Analysis

 

[1]        Shukla, S. K., Mushaiqri, A., Said, N. R., Al Subhi, H. M., Yoo, K., Al Sadeq, H., (2020). Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Applied Water Science, 10:  1-9, doi: 10.1007/s13201-020-1145-z.
[2]        Kumar, A. and Jena, H. M., (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6:  651-658, doi: 10.1016/j.rinp.2016.09.012.
[3]        Shalna, T. and Yogamoorthi, A., (2015). Preparation and characterization of activated carbon from used tea dust in comparison with commercial activated carbon. C International Journal of Recent Scientific Research, 6:  2750-2755.
[4]        Fu, T., Li, Z., (2015). Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis. Chemical Engineering Science, 135:  3-20, doi: https://doi.org/10.1016/j.ces.2015.03.007.
[5]        Özdemir, M., Bolgaz, T., Saka, C., Şahin, Ö., (2011). Preparation and characterization of activated carbon from cotton stalks in a two-stage process. Journal of Analytical and Applied Pyrolysis, 92:  171-175, doi: 10.1016/j.jaap.2011.05.010.
[6]        Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R., (2015). Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method. BioResources, 10:  986-1007.
[7]        Tadda, M. A., Ahsan, A., Shitu, A., ElSergany, M., Arunkumar, T., Jose, B., Razzaque, M.A., Daud, N. N., (2016). A review on activated carbon: process, application and prospects. Journal of Advanced Civil Engineering Practice and Research, 2:  7-13.
[8]        Yorgun, S., Yıldız, D., (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53:  122-131, doi: https://doi.org/10.1016/j.jtice.2015.02.032
[9]        Thompson, K. A., Shimabuku, K. K., Kearns, J. P., Knappe, D. R., Summers, R. S., Cook, S. M., (2016). Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environmental science & technology, 50:  11253-11262, doi: 10.1021/acs.est.6b03239.
[10]      Wang, B., Gao, B., Fang, J., (2017). Recent advances in engineered biochar productions and applications. Critical reviews in environmental science and technology, 47:  2158-220, doi: 10.1080/10643389.2017.1418580.
[11]      Yorgun, S., Yıldız, D., Şimşek, Y. E., (2016). Activated carbon from paulownia wood: Yields of chemical activation stages. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38:  2035-2042, doi: 10.1080/15567036.2015.1030477.
[12]      Balajii, M., Niju, S., (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 17:  1447-1469, doi: 10.1007/s10311-019-00885-x.
[13]      Oginni, O. J., (2018). Characteristics of activated carbons produced from herbaceous biomass feedstock. PhD Thesis,  Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, West Virginia, USA, doi: 10.33915/etd.3719.
[14]      Lim, W. C., Srinivasakannan, C., Balasubramanian, N., (2010). Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. Journal of analytical and applied pyrolysis, 88:  181-186, doi: 10.1016/j.jaap.2010.04.004.
[15]      Baseri, G., Ismailzadeh, S., Hoseini, F., (2017). Production of activated carbon by chemical and physical activation of citrus, olive and oak wood and comparison of their properties. Iranian, Chemical Engineering Journal. Vol. 36. No. 1,  177-192,[In Persian].
[16]      Ghane, S., Karimzadeh, R., moosavi, E., (2021). Investigation of Lignin-based activated carbon synthesis parameters on its structural properties. IQBQ. Vol. 5. No. 3,  71-81, [In Persian].
[17]      Bag, O., Tekin, K., Karagoz, S., (2020). Microporous activated carbons from lignocellulosic biomass by KOH activation. Fullerenes, Nanotubes and Carbon Nanostructures, 12:s  1030-1037, doi: 10.1080/1536383X.2020.1794850.
[18]      Toteva, V., Ruskova, K., Zahariev, A., (2020).‏ Preparation and Characterization of Activated Carbon Derived from Lignocellulosic Waste Biomass. International Conference on High Technology for Sustainable Development (HiTech), Sofia, Bolgaria,  1-4, doi: 10.1109/HiTech51434.2020.9363971.
[19]      Anisuzzaman, S. M., Joseph, C. G., Daud, W. M. A. B. W., Krishnaiah, D., Yee, H. S., (2015). Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry, 6:  9-21, doi: 10.1007/S40090-014-0027-3.
[20]      Misran, E., Maulina, S., Dina, S. F., Nazar, A., Harahap, S. A., (2018). Activated carbon production from bagasse and banana stem at various times of carbonization. in IOP Conference Series: Materials Science and Engineering, 309: IOP Publishing, 012064, doi: 10.1088/1757-899X/309/1/012064.
[21]      Yakout, S. M., El-Deen, G. S., (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian journal of chemistry, 9:  S1155-S1162.
doi: 10.1016/j.arabjc.2011.12.002.
[22]      Villota, S. M., Lei, H., Villota, E., Qian, M., Lavarias, J., Taylan, V., Agulto, I., Mateo, W., Valentin, M., Denson, M., (2019). Microwave-assisted activation of waste cocoa pod husk by H3PO4 and KOH—comparative insight into textural properties and pore development. ACS Omega, 4, 7088-7095, doi: 10.1021/acsomega.8b03514.
[23]      Valero-Romero, M. J., Calvo-Muñoz, E. M., Ruiz-Rosas, R., Rodriguez-Mirasol, J., Cordero, T., (2019). Phosphorus-containing mesoporous carbon acid catalyst for methanol dehydration to dimethyl ether. Industrial & Engineering Chemistry Research, 58:  4042-4053, doi: 10.1021/acs.iecr.8b05897.
[24]      Demıral, I., Aydın Şamdan, C., (2016). Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17:  125-138, doi: 10.18038/btda.64281.
[25]      Mussatto, S. I., Machado, E. M., Carneiro, L. M., Teixeira, J. A., (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92:  763-768. doi: 10.1016/j.apenergy.2011.08. 020.
[26]      Wang, L., Wang, X., Zou, B., Ma, X., Qu, Y., Rong, C., Li, Y., Su, Y., Wang, Z., (2011). Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis. Bioresource technology, 102:  8220-8224, doi: 10.1016/j.biortech.2011. 05.079.
[27]      Méndez-Moreno, J. D. C., Garza-Rodríguez, I. M., Torres-Sánchez, S. A., Jiménez-Pérez, N. D. C., Sánchez-Lombardo, I., López-Martínez, S., Lobato-García, C. E., Morales-Bautista, C. M., (2020). Design of experiments to optimize soxhlet-HTP method to establish environmental diagnostics of polluted soil: Optimization of the soxhlet-HTP method by DOE. in Book: "Design of experiments for chemical, pharmaceutical, food, and industrial applications", IGI Global,  33-52. doi:10.4018/978-1-7998-1518-1.ch002.
[28]      Sing, K.S., (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57:  603-619.
[29]      Lowell, S., Shields, J. E., Thomas, M. A., Thommes, M., (2006). "Characterization of porous solids and powders: surface area, pore size and density", Springer Science & Business Media, doi: 10.1007/978-1-4020-2303-3.
[30]      Bansal, R. C., Goyal, M., (2005). "Activated carbon adsorption". CRC press, Taylor and Francis Group, London, 520, doi: 10.1201/9781420028812.