سنتز نانوکامپوزیت ZnO-ZnS و کاربرد آن در تخریب فتوکاتالیستی رنگ آزو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مهندسی شیمی، دانشگاه زنجان

2 استادیار شیمی، دانشگاه آزاد اسلامی واحد بروجرد

چکیده

نانوکامپوزیت ZnO-ZnS به روش سل- ژل با پیشسازندۀ تیواوره سنتز شد. ویژگی­های نانوکامپوزیت با ترفندهای XRD، SEM، FTIR و UV-Vis DRS ارزیابی شدند. نتایج آنالیزهای XRD و FTIR حضور ساختار بلورین ZnO و ZnS را در نانوکامپوزیت نشان دادند. آنالیز SEM، سنتز فتوکاتالیست را در ابعاد نانومتری تأیید کرد. ساخت نانوکامپوزیت موجب افزایش بازده جذب نور در مقایسه با اکسید روی شد و باند گپ فتوکاتالیست ZnO-ZnS به eV 3 کاهش یافت. نانوکامپوزیت ZnO-ZnS برای تخریب فتوکاتالیستی رنگ آزو تحت تابش نور فرابنفش بررسی شد. میزان تخریب DR80 بعد از 60 دقیقه تابش نور به 76/98 درصد رسید که 40 درصد بیشتر از تخریب با نانوذرات ZnO است. کاهش باند گپ نانوکامپوزیت و انتقال بار مناسب در پیوند ناهمگون ایجاد شده باعث افزایش قابل توجه فعالیت فتوکاتالیستی سازوکاری برای عمل‌کرد نانوکامپوزیت ZnO-ZnS ارائه شد. پایداری نانوکامپوزیت بعد از 4 مرتبه استفادۀ مجدد ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of ZnO-ZnS Nanocomposite and its Application in Photocatalytic Degradation of Direct Red 80 Dye

نویسندگان [English]

  • K. Kalantari 1
  • E. Asgari 2
1 Assistant Professor of Chemical Engineering, University of Zanjan
2 Assistant Professor of Chemistry, Boroujerd Branch, Islamic Azad University
چکیده [English]

ZnO-ZnS nanocomposite was synthesized by sol-gel method with thiourea precursor. Nanocomposite properties were evaluated by XRD, SEM, FTIR and UV-vis DRS. XRD and FTIR results confirmed the presence of the crystalline structure of ZnO and ZnS in the nanocomposite. SEM analysis confirmed the synthesis of photocatalyst in nanometer dimensions. The fabrication of nanocomposite increased the light absorption efficiency compared to pure ZnO and the band gap of
ZnO-ZnS photocatalyst decreased to 3 eV. ZnO-ZnS nanocomposite was investigated for the photocatalytic degradation of direct red 80 (DR80) under ultraviolet light irradiation. The DR80 degradation reached 98.76% after 60 minutes irradiation, which is 40% higher than that of ZnO nanoparticles. Reducing the band gap of nanocomposite and proper charge transfer in the created heterojunction caused a significant increase in the photocatalytic activity. A mechanism for the ZnO-ZnS nanocomposite performance was presented. Stability of nanocomposite was evaluated after 4 times of recycling.

کلیدواژه‌ها [English]

  • Photocatalyst
  • ZnO-ZnS Nanocomposite
  • Photocatalytic Degradation
  • DR 80
[1]        Zhang, S., Li, B., Wang, X., Zhao, G., Hu, B., Lu, Z., Wen, T., Chen, J., & Wang, X. (2020). Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chemical Engineering Journal, 390: 124642.
[2]        Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2): 275-290.
[3]        Guan, G., Ye, E., You, M., & Li, Z. (2020). Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: current status and future perspectives. Small, 16(19): 1907087.
[4]        Yin, J., Gao, D., Zhu, X., Liu, X., & Li, H. (2021). One-pot synthesis of 3D porous Bi7O9I3/N-doped graphene aerogel with enhanced photocatalytic activity for organic dye degradation in wastewater. Ceramics International, 47(14): 19556-19566.
[5]        Donkadokula, N. Y., Kola, A. K., Naz, I., & Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Reviews in environmental science and bio/technology: 1-18.
[6]        Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29: 100804.
[7]        Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. -H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process safety and environmental protection, 143: 138-163.
[8]        Gautam, S., Agrawal, H., Thakur, M., Akbari, A., Sharda, H., Kaur, R., & Amini, M. (2020). Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. Journal of Environmental Chemical Engineering, 8(3): 103726.
[9]        Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., & Li, Z. (2021). Recent advances of photocatalytic application in water treatment: a review. Nanomaterials, 11(7): 1804.
[10]      Gusain, R., Gupta, K., Joshi, P., & Khatri, O. P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in colloid and interface science, 272: 102009.
[11]      Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97: 111-128.
[12]      Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 88: 428-448.
[13]      Saffari, R., Shariatinia, Z., & Jourshabani, M. (2020). Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications. Environmental Pollution, 259: 113902.
[14]      Kabir, R., Saifullah, M. A. K., Ahmed, A. Z., Masum, S. M., & Molla, M. A. I. (2020). Synthesis of n-doped ZnO nanocomposites for sunlight photocatalytic degradation of textile dye pollutants. Journal of Composites Science, 4(2): 49.
[15]      He, D., Wang, L., Xu, D., Zhai, J., Wang, D., & Xie, T. (2011). Investigation of photocatalytic activities over Bi2WO6/ZnWO4 composite under UV light and its photoinduced charge transfer properties. ACS applied materials & interfaces, 3(8): 3167-3171.
[16]      Kumari, V., Mittal, A., Jindal, J., Yadav, S., & Kumar, N. (2019). S-, N-and C-doped ZnO as semiconductor photocatalysts: A review. Frontiers of Materials Science, 13(1): 1-22.
[17]      Singh, P., Kumar, R., & Singh, R. K. (2019). Progress on transition metal-doped ZnO nanoparticles and its application. Industrial & Engineering Chemistry Research, 58(37): 17130-17163.
[18]      Sanakousar, F., Vidyasagar, C., Jiménez-Pérez, V., & Prakash, K. (2022). Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Materials Science in Semiconductor Processing, 140: 106390.
[19]      Zhao, J., Zhao, L., & Wang, X. (2008). Preparation and characterization of ZnO/ZnS hybrid photocatalysts via microwave-hydrothermal method. Frontiers of Environmental Science & Engineering in China, 2(4): 415-420.
[20]      Jung, H., Pham, T. -T., &Shin, E. W. (2019). Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. Journal of Alloys and Compounds, 788: 1084-1092.
[21]      Dhahri, I., Ellouze, M., Labidi, S., Al-Bataineh, Q. M., Etzkorn, J., Guermazi, H., Telfah, A., Tavares, C. J., Hergenröder, R., & Appel, T. (2022). Optical and structural properties of ZnO NPs and ZnO–Bi2O3 nanocomposites. Ceramics International, 48(1): 266-277.
[22]      Munguti, L., & Dejene, F. (2021). Effects of Zn: Ti molar ratios on the morphological, optical and photocatalytic properties of ZnO-TiO2 nanocomposites for application in dye removal. Materials Science in Semiconductor Processing, 128: 105786.
[23]      Goktas, S., & Goktas, A. (2021). A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 863: 158734.
[24]      Lin, J., Luo, Z., Liu, J., & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87: 24-31.
[25]      Zamiri, R., Tobaldi, D. M., Ahangar, H. A., Rebelo, A., Seabra, M. P., Belsley, M. S., & Ferreira, J. (2014). Study of far infrared optical properties and, photocatalytic activity of ZnO/ZnS
hetero-nanocomposite structure. RSC advances, 4(67): 35383-35389.
[26]      Lee, G. -J., & Wu, J. J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder technology, 318: 8-22.
[27]      Ali, S., Saleem, S., Salman, M., & Khan, M. (2020). Synthesis, structural and optical properties of ZnS–ZnO nanocomposites. Materials Chemistry and Physics, 248: 122900.
[28]      Sanad, M. F., Shalan, A. E., Bazid, S. M., & Abdelbasir, S. M. (2018). Pollutant degradation of different organic dyes using the photocatalytic activity of ZnO@ ZnS nanocomposite materials. Journal of environmental chemical engineering, 6(4): 3981-3990.
[29]      Ma, Q., Wang, Z., Jia, H., & Wang, Y. (2016). ZnS–ZnO nanocomposites: synthesis, characterization and enhanced photocatatlytic performance. Journal of Materials Science: Materials in Electronics, 27(10): 10282-10288.
[30]      Sundararajan, M., Sakthivel, P., & Fernandez, A. C. (2018). Structural, optical and electrical properties of ZnO-ZnS nanocomposites prepared by simple hydrothermal method. Journal of Alloys and Compounds, 768: 553-562.
[31]      Ali, M. M., Haque, M. J., Kabir, M. H., Kaiyum, M. A., & Rahman, M. (2021). Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities. Results in Materials, 11: 100199.
[32]      Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5): 3729-3749.
[33]      Dhas, C. R., Venkatesh, R., Jothivenkatachalam, K., Nithya, A., Benjamin, B. S., Raj, A. M. E., Jeyadheepan, K., & Sanjeeviraja, C. (2015). Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceramics International, 41(8): 9301-9313.
[34]      Biswas, S., & Kar, S. (2008). Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology, 19(4): 045710.
[35]      Yang, X., Liu, H., Li, T., Huang, B., Hu, W., Jiang, Z., Chen, J., & Niu, Q. (2020). Preparation of flower-like ZnO@ ZnS core-shell structure enhances photocatalytic hydrogen production. International Journal of Hydrogen Energy, 45(51): 26967-26978.
[36]      Asgari, E., & Kalantari, K. (2021). Improvement of Photocatalytic Activity of ZnO Nanoparticles by Mn Doping in BD71 Degradation. Iranian Chemical Engineering Journal, 20(115): 43-52.
[37]      Shanmugasundaram, A., Kim, D. -S., Chinh, N. D., Park, J., Jeong, Y. -J., Piao, J., Kim, D., & Lee, D. W. (2021). N-/S-dual doped C@ ZnO: An excellent material for highly selective and responsive NO2 sensing at ambient temperatures. Chemical Engineering Journal, 421: 127740.
[38]      Raleaooa, P. V., Roodt, A., Mhlongo, G. G., Motaung, D. E., Kroon, R. E., & Ntwaeaborwa, O. M. (2017). Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites. Physica B: Condensed Matter, 507: 13-20.
[39]      Kalantari, K., Kalbasi, M., Sohrabi, M., & Royaee, S. J. (2016). Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, 42(13): 14834-14842.
[40]      Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra, ACS Publications, 6814-6817.
[41]      Habibi, M. H., & Mikhak, M. (2012). Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71. Applied Surface Science, 258(18): 6745-6752.
[42]      Lan, C., Gong, J., Jiang, Y., & Ding, Q. (2012). Fabrication of ZnS/SnO nanowire/nanosheet hierarchical nanoheterostructure and its photoluminescence properties. CrystEngComm, 14(23): 8063-8067.
[43]      Yang, L., Zhao, Z., Wang, H., Dong, J., Wang, L., Zhou, Q., Wan, X., Zhao, R., & Cai, Z. (2020). Synthesis of ZnO/ZnS core/shell microsphere and its photocatalytic activity for methylene blue and eosin dyes degradation. Journal of Dispersion Science and Technology, 41(14): 2152-2158.
[44]      Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A. M., & Karuppuchamy, S. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828: 154281.
[45]      Muhambihai, P., Rama, V., & Subramaniam, P. (2020). Photocatalytic degradation of aniline blue, brilliant green and direct red 80 using NiO/CuO, CuO/ZnO and ZnO/NiO nanocomposites. Environmental Nanotechnology, Monitoring & Management, 14: 100360.