پیش‌بینی حلالیت تعادل دی‌اکسیدکربن در محلول تری‌اتانول آمین + پیپرازین + آب با استفاده از مدل‌سازی شبکۀ عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر پسا دکتری دانشکدۀ مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

2 استاد دانشکدۀ مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

چکیده

در این مطالعه، مدل‌ مبتنی بر هوش مصنوعی برای پیش‌بینی حلالیت تعادلی دی‌اکسیدکربن در سامانۀ حلال آمین (تریاتانول آمین + پیپرازین + آب) با هدف جذب
دی‌اکسیدکربن ایجاد شده است. در مدل
پرسپترون چندلایه، داده‌های حلالیت (بارگذاری دی‌اکسیدکربن در محلول آمین) به‌عنوان تابعی از فشار جزئی دیاکسیدکربن، دمای سامانه و ترکیب آمین بررسی شد. الگوریتم لونبرگ- مارکوارت پسانتشار برای پیش‌بینی فشار جزئی دی‌اکسیدکربن استفاده شد. نسبت نهایی آموزش، اعتبارسنجی و مجموعۀ داده‌های آزمایشی تقریباً 70:15:15 بود. ساختار بهینۀ پرسپترون چندلایه (MLP) در الگوریتم لونبرگ- مارکوارت برای فشار جزئی دی‌اکسیدکربن با 20 نورون در اولین لایۀ پنهان و 10 نورون در لایۀ پنهان دوم ایجاد شده است. ضریب همبستگی 995/0 بین نتایج تجربی و محاسبات شبکۀ عصبی مصنوعی وجود دارد که سازگاری عالی بین آنها را نشان می‌دهد. بهترین عملکرد اعتبارسنجی 0043497/0 از دورۀ 13 بود. بهطور کلی، نتایج نشان می‌دهد که مدل اعمالشده می‌تواند پیشبینی دقیقی از فشار جزئی و یا حلالیت برای شرایط مختلف عملیاتی ارائه دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of Carbon Dioxide Equilibrium Solubility in Solution of Triethanolamine + Piperazine + Water using Artificial Neural Network Modeling

نویسندگان [English]

  • Z. Khoshraftar 1
  • A. Ghaemi 2
1 Postdoctoral Researcher of Chemical Engineering, Iran University of Science and Technology
2 Professor of Chemical Engineering, Iran University of Science and Technology
چکیده [English]

In this study, we developed artificial neural network-based model for prediction of equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water) for the purpose of carbon dioxide uptake. In the MLP model, the solubility data (CO2 loading in the amine solution) were investigated as functions of CO2 partial pressure, system temperature, and amine composition. The Levenberg–Marquardt back-propagation (LMP) algorithm was used to predict the partial pressure of carbon dioxide. The final ratio of training, validation, and test datasets was approximately 70:15:15. The optimum multilayer perceptron (MLP) structure in Levenberg-Marquardt algorithm for CO2 partial pressure is created with 20 neurons in the first hidden layer and 10 neurons in the second hidden layer. There was a 0.99546 correlation coefficient between the experimental results and the artificial neural network (ANN) calculations, demonstrating excellent compatibility between them. The best validation performance was 0.0043497 from epoch 13. In general, the results show that the applied model can provide an accurate prediction of partial pressure or solubility for different operating conditions.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Solubility of Carbon Dioxide
  • Blended Amines
  • Triethanolamine
  • Piperazine

 

[1]        Khoshraftar, Z., Ghaemi, A., & Mohseni Sigaroodi, A. H. (2021). The effect of solid adsorbents in Triethanolamine (TEA) solution for enhanced CO2 absorption rate. Research on Chemical Intermediates, 47, 4349-4368.
[2]        Khoshraftar, Z., Ghaemi, A., & Mashhadimoslem, H. (2021). Evaluation of the Silica Gel Adsorbent Potential for Carbon Dioxide Capture: Experimental and Modeling. Iranian Journal of Chemical Engineering (IJChE), 18(4), 64-80.
[3]        Khoshraftar, Z., & Ghaemi, A. (2022). Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption. Heliyon, 8(1).
[4]        Khoshraftar, Z., & Ghaemi, A. (2022). Preparation of Activated Carbon from Entada Africana Guill. & Perr for CO2 Capture: Artificial Neural Network and Isotherm Modeling. Journal of Chemical and Petroleum Engineering, 56(1), 165-180.
[5]        Karimi, M., Shirzad, M., Silva, J. A., & Rodrigues, A. E. (2022). Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. Journal of CO2 Utilization, 57, 101890.
[6]        Stuardi, F. M., MacPherson, F., & Leclaire, J. (2019). Integrated CO2 capture and utilization: A priority research direction. Current Opinion in Green and Sustainable Chemistry, 16, 71-76.
[7]        Tangang, F. T., Juneng, L., Salimun, E., Sei, K., & Halimatun, M. (2012). Climate change and variability over Malaysia: gaps in science and research information. Sains Malaysiana, 41(11), 1355-1366.
[8]        Gao, Y., Li, C., Xia, S., & Ma, P. (2021). The solubility of CO2 in (hexane+ cyclohexane) and (cyclopentane+ ethylbenzene) and (toluene+ undecane) systems at high pressures. The Journal of Chemical Thermodynamics, 154, 106324.
[9]        Stauffer, P. H., Keating, G. N., Middleton, R. S., Viswanathan, H. S., Berchtold, K. A., Singh, R. P., Rajesh, J. P., & Mancino, A. (2011). Greening coal: breakthroughs and challenges in carbon capture and storage.
 [10]     Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., & Songolzadeh, R. (2014). Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal, 2014.
[11]      Ghaemi, A., Qanadzadeh, H., Asgharpour, Z. (2013). Modeling of carbon dioxide solubility in Pz-CO2-H2O system. Iranian Chemical Engineering Journal, 13, 69-79. [In Persian].
[12]      Li, Y. G., & Mather, A. E. (1996). Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of triethanolamine. Industrial & engineering chemistry research, 35(12), 4804-4809.
[13]      Arshad, M. W., Fosbøl, P. L., von Solms, N., Svendsen, H. F., & Thomsen, K. (2014). Equilibrium solubility of CO2 in alkanolamines. Energy Procedia, 51, 217-223.
[14]      Jou, F. Y., Otto, F. D., & Mather, A. E. (1985). Equilibria of H2S and CO2 in triethanolamine solutions. The Canadian Journal of Chemical Engineering, 63(1), 122-125.
[15]      Tan, C. S., & Chen, J. E. (2006). Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and purification technology, 49(2), 174-180.
[16]      Khoshraftar, Z., & Ghaemi, A. (2022). Evaluation of pistachio shells as solid wastes to produce activated carbon for CO2 capture: isotherm, response surface methodology (RSM) and artificial neural network (ANN) modeling. Current Research in Green and Sustainable Chemistry, 5, 100342.
[17]      Bello, V. E., & Olafadehan, O. A. (2021). Comparative investigation of RSM and ANN for multi-response modeling and optimization studies of derived chitosan from Archachatina marginata shell. Alexandria Engineering Journal, 60(4), 3869-3899.
[18]      Igwegbe, C. A., Onukwuli, O. D., Ighalo, J. O., & Menkiti, M. C. (2021). Bio-coagulation-flocculation (BCF) of municipal solid waste leachate using picralima nitida extract: RSM and ANN modelling. Current Research in Green and Sustainable Chemistry, 4, 100078.
[19]      Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11), 1225-1231.
[20]      Chung, P. Y., Soriano, A. N., Leron, R. B., & Li, M. H. (2010). Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine+ piperazine+ water). The Journal of Chemical Thermodynamics, 42(6), 802-807.
[21]      Esfe, M. H., Motallebi, S. M., & Toghraie, D. (2022). Investigation the effects of different nanoparticles on density and specific heat: Prediction using MLP artificial neural network and response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 645, 128808.
[22]      Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. International Journal of Remote Sensing, 29(4), 1185-1206.
[23]      Mashhadimoslem, H., Ghaemi, A., & Palacios, A. (2020). Analysis of deep learning neural network combined with experiments to develop predictive models for a propane vertical jet fire. Heliyon, 6(11).
[24]      Fath, A. H., Madanifar, F., & Abbasi, M. (2020). Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum, 6(1), 80-91.
[25]      Benamara, C., Nait Amar, M., Gharbi, K., & Hamada, B. (2019). Modeling wax disappearance temperature using advanced intelligent frameworks. Energy & Fuels, 33(11), 10959-10968.
[26]      Hemmati-Sarapardeh, A., Amar, M. N., Soltanian, M. R., Dai, Z., & Zhang, X. (2020). Modeling CO2 solubility in water at high pressure and temperature conditions. Energy & Fuels, 34(4), 4761-4776.
[27]      Wei, X., Zou, N., Zeng, L., & Pei, Z. (2022). PolyJet 3D printing: Predicting color by multilayer perceptron neural network. Annals of 3D Printed Medicine, 5, 100049.
[28]      Dugas, R. E., & Rochelle, G. T. (2011). CO2 absorption rate into concentrated aqueous monoethanolamine and piperazine. Journal of Chemical & Engineering Data, 56(5), 2187-2195.
[29]      Okut, H. (2016). Bayesian regularized neural networks for small n big p data. Artificial neural networks-models and applications, 28.
[30]      Shekarkar, H., Kathiri N.,  Mohammadi, T. (2013). Modeling of microfiltration membrane for oil wastewater treatment using Hermia model and neural network. Journal of Iranian Chemical Engineering, 76, 4-12, In Persian.
[31]      Zahedi, G., Kerami, Z. (2008). Simulation of delayed coking unit by artificial neural network. Journal of Iranian Chemical Engineering, 38, 1-15, In Persian.
[32]      Etemad,  I., Ghaemi, A., Shirvani, S. (2014). Prediction of CO2 mass transfer flux in amine solutions using neural networks. Journal of Iranian Chemical Engineering, 79, 98-106, In Persian.
[33]      Ziaee, S. A., Sadrossadat, E., Alavi, A. H., & Mohammadzadeh Shadmehri, D. (2015). Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies. Environmental earth sciences, 73, 3417-3431.