مروری بر تبدیل فوتوکاتالیستی CO2 با استفاده ازفوتوکاتالیست‏های TiO2 اصلاح‌شده

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس ارشد مهندسی شیمی، دانشگاه تهران

2 استادیار مهندسی شیمی، پژوهشگاه نیرو

چکیده

فرایند احیای فوتوکاتالیستی دی­اکسیدکربن علاوه‌بر تبدیل انرژی پاک خورشیدی به مواد با ارزش افزوده، گاز گلخانه­ای دی‏اکسید‏کربن را نیز کاهش می­دهد. TiO2 پرکاربردترین فوتوکاتالیست مورد استفاده در این فرایند است؛ اما انرژی باندگپ بزرگ و نرخ بالای بازترکیب جفت الکترون- حفره در TiO2 نیازمند اصلاح است. در این مقاله روش‌های اصلاح TiO2 مانند ترکیب با نیمه‏رساناها و دوپ عناصر فلزی و نافلزی و ویژگی‏های ساختاری و عملکرد فوتوکاتالیست‏های TiO2 اصلاح‌شده با تمرکز بر رفتارهای انتقال بار، بررسی شده است. انواع فوتوراکتورها شامل بستر ثابت، غشایی، دوغابی و غیره نیز بررسی شده‏اند. دوپینگ با فلز و نافلز بازده محصول را تا 207 برابر افزایش می‏دهد. TiO2 اصلاح‌شده به‌روش دوپینگ با فلزات گران‏بها عملکرد بالایی دارد. می‏توان از دوپ‌کردن مواد ارزان‏قیمت‏تر مانند g-C3N4 برای دست‌یابی به عملکردی مشابه بهره جست. هم‌چنین، بازده راکتورهای مونولیت به‌ترتیب 23 و 14 برابر بیشتر از راکتورهای دوغابی و بستر ثابت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on Photocatalytic Conversion of CO2 Over Modified TiO2 Photocatalysts

نویسندگان [English]

  • A. Taghiloo 1
  • A. S. Larimi 2
1 M. Sc. Student of Chemical Engineering, University of Tehran
2 Assistant Professor of Chemical Engineering, Niroo Research Institute
چکیده [English]

The process of photocatalytic reduction of carbon dioxide converts clean solar energy to value-added materials, while reduces the carbon dioxide greenhouse gas. TiO2 is the most widely used semiconductor in this process. However, its large bandgap energy and high rate of electron-hole pair recombination needs to be modified. In this review article, ways to modify TiO2, such as combining with semiconductors and doping metallic and non-metallic elements, as well as the structural features and performance of modified TiO2 photocatalysts with a special focus on charge transfer behavior have been investigated. Various types of photoreactors, including fixed bed, membrane, slurry, etc., have been investigated. Doping with metal and non-metal increases the yield of the product up to 207 times. TiO2 modified by doping with precious metals have high performance. Doping cheaper materials such as g-C3N4 can be employed to achieve similar performance. Moreover, the efficiency of monolith reactors is 23 and 14 times higher than slurry and fixed bed reactors, respectively.

کلیدواژه‌ها [English]

  • CO2 Reduction
  • TiO2 Modification
  • Doping
  • Heterojunction
  • Photocatalyst
  • Photoreactor

 

[1]        Larimi, A. S., Alavi, S. M., "Partial Oxidation of Methane over Ni/CeZrO₂ Mixed Oxide Solid Solution Catalysts," International Journal of Chemical Engineering and Applications, vol. 3, no. 1, pp. 6-9, (2012).
[2]        Foo, D. C. Y., Tan, R. R., "Process Integration Approaches to planning carbon management networks", First edition, CRC Press, Taylor and Francis Group, London, p. 173, (2020).
[3]        Choi, M. J., Cho, D. H., "Research activities on the utilization of carbon dioxide in Korea", Clean - Soil, Air, Water, Vol. 36, pp. 426–432, (2008).
[4]        Wilcox, J., "Carbon capture", Springer Science, Springer NewYork Dordrecht Heidelberg London, (2012).
[5]        Styring, P., Quadrelli, E. A., Armstrong, K., "Carbon Dioxide Utilisation: closing the carbon cycle", First Edition, Elsevier, Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 I GB, UK 225 Wyman Street, Waltham, MA 02451, USA, p. 336, (2015).
[6]        Simakov, D. S. A., "Renewable Synthetic Fuels and Chemicals from Carbon Dioxide, Springer Briefs in Energy, The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland, p. 75, (2017).
[7]        Francis, A., Priya, S. S., Kumar, S. H., Sudhakar, K., Tahir, M., "A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels", Journal of CO2 Utilization, Vol. 47, p. 101515, (2021).
[8]        Ma, Y., Wang, Z., Xu,X., Wang, J., "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2", Chinese Journal of Catalysis, Vol. 38, pp. 1956–1969, (2017).
[9]        Ohtani, B., "Photocatalysis A to Z-What we know and what we do not know in a scientific sense", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 11, pp. 157–178, (2010).
[10]      Etacheri, V., Valentin, C. Di., Schneider, J., Bahnemann, D., Pillai, S. C., "Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments", Journal of Photochemistry and Photobiology C: Photochemistry, Vol. 25, pp. 1–29, (2015).
[11]      Ameta, R., Ameta, S. C., "Photocatalysis: principles and applications", CRC Press is an imprint of Taylor & Francis Group, an Informa business, (2017)
[12]      Tahir, M., Amin N S., "Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4", Applied Catalysis B: Environmental, Vol. 162, pp. 98–109, (2015).
[13]      Ola, O., Maroto-Valer, M. M., "Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 24, pp. 16–42, (2015).
[14]      Abdullah, H., Rahman Khan, Md. M., Ong, H. R., Yaakob, Z., "Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview", Journal of CO₂ Utilization, Vol. 22, pp. 15–32, (2017).
[15]      Assadi, M. H. N., Hanaor, D. A. H., "The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2-: A theoretical study", Applied surface science, Vol. 387, pp. 682–689, (2016).
[16]      Bingham, S., Daoud, W. A., "Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping", Journal of Materials Chemistry, Vol. 21, pp. 2041–2050, ( 2011).
[17]      Low, J., Cheng, B., Yu, J., "Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review", Applied surface science, Vol. 392, pp. 658–686, (2017).
[18]      Zhang, Q., Gao, T., Andino, J. M., Li, Y., "Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor", Applied Catalysis B: Environmental, Vol. 123–124, pp. 257–264, (2012).
[19]      Srinivas, B., Shubhamangala, B., Lalitha, K., Subrahmanyam, M., "Photocatalytic reduction of CO2 over Cu-TiO2/ molecular sieve 5A composite", Photochemistry and Photobiology, Vol. 87, pp. 995–1001, (2011).
[20]      Tahir, M., Amin, N. S., "Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels", Energy Conversion and Management, Vol. 76, pp. 194–214, (2013).
[21]      Rani, S., Bao, N., Roy, S. C., "Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes", Applied Surface Science, Vol. 289, pp. 203–208, (2014).
[22]      Kumar, S. G., Devi, L. G., "Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics", physical chemistry, Vol. 115, pp. 13211–13241,( 2011).
[23]      Liu, L., Zhao, H., Andino, J. M., Li, Y., "Photocatalytic CO2 reduction with H2O on TiO2nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry", ACS catalysis, Vol. 2, pp. 1817–1828, (2012).
[24]      Gao, Y., Wang, H., Wu, J., Zhao, R., Lu, Y., Xin, B., "Controlled facile synthesis and photocatalytic activity of ultrafine high crystallinity TiO2 nanocrystals with tunable anatase/rutile ratios", Applied surface science, Vol. 294, pp. 36–41, (2014).
[25]      Wang, S., Lian, J. S., Zheng, W. T., Jiang, Q., "Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol-gel technique", Applied surface science, Vol. 263, pp. 260–265, (2012).
[26]      Dhakshinamoorthy, A., Navalon, S., Corma, A., Garcia, H., "Photocatalytic CO2 reduction by TiO2 and related titanium containing solids", Energy Environmental science, Vol. 5, pp. 9217–9233, (2012).
[27]      Kočí, K., Zatloukalovà, K., Obalovà, L.,Kref-Íkovà, S., Hospodkovà, A., "Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst", Chinese Journal of Catalysis, Vol. 32, pp. 812–815, (2011).
[28]      Shin, E., Kim, J., Hong, J., "Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance", Applied surface science, Vol. 379, pp. 33–38, (2016).
[29]      Samsudin, E. M., Abd Hamid, S. B., Juan, J. C., Basirun, W. J., Centi, G., "Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts", Applied surface science, Vol. 370, pp. 380–393, (2016).
[30]      Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., Rangarajan, G., "Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review", Journal of Environmental Management, Vol. 270, p. 110906, (2020).
[31]      Kuyumcu, O. K., Kibar, E., Dayioʇlu, K., Gedik, F. Akin, A. N., Aydino-lu, S. O., "A comparative study for removal of different dyes over M/TiO2(M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 311, pp. 176–185, (2015).
[32]      Zhang, Z., Huang, Z., Cheng, X., Wang, Q., Chen, Y., Dong, P., "Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different
nitrogen-sources", Applied surface science, Vol. 355, pp. 45–51, (2015).
[33]      Koirala, A. R., Docao, S., Lee, S. B., Yoon, K. B., "Fate of methanol under one-pot artificial photosynthesis condition with metal-loaded TiO2 as photocatalysts", Catalysis Today, Vol. 243, pp. 235–250, (2014).
[34]      Feng, X., Paulose , M., Komarneni, S., Bao, N., "Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide", Materials Chemistry., Vol. 21, pp. 13429–13433, (2011).
[35]      Sim, L. C., Leong, K. H., Saravanan, P., Ibrahim, S., "Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2", Applied surface science, Vol. 358, pp. 122–129, (2015).
[36]      Meng, X., Ouyang , S., Kako , T., Li, P., Wang, T., "Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst", ChemComm, Vol. 50, pp. 11517–11519, (2014).
[37]      Liu, L., Zhao, C., Zhao, H., Pitts, D., Li, Y., "Porous Microspheres of MgO-Patched TiO2 for CO2 Photoreduction with H2O Vapor: Temperature-Dependent Activity and Stability", Chemical Communications.
[38]      Yu, C., Zhou, W., Yu, J. C., Liu, H., Wei, L., "Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation", Chinese journal of catalysis, Vol. 35, pp. 1609–1618, (2014).
[39]      Xi, G., Ouyang, S., Ye, J., "General synthesis of hybrid TiO2 mesoporous ‘french fries’ toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: A case of TiO2/ZnO", Chemistry A European journal, Vol. 17, pp. 9057–9061, (2011).
[40]      Lee, K. Y., Sato, K., Mohamed, A. R., "Facile synthesis of anatase-rutile TiO2 composites with enhanced CO2 photoreduction activity and the effect of Pt loading on product selectivity", Materials Letters, Vol. 163, pp. 240–243, (2016).
[41]      Zhao, Y., Huang, H., Yang, L., Wang, S., "Fabrication of BiOBr nanosheets@TiO2 nanobelts p–n junction photocatalysts for enhanced visible-light activity", Applied surface science, Vol. 365, pp. 209–217, (2016).
[42]      Hisatomi, T., Kubota, J., Domen, K., "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting", Chem. Soc. Rev., Vol. 43, pp. 7520–7535, (2014).
[43]      Song, G., Xin, F., Yin, X., "Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol", Journal of Colloid and Interface Science, Vol. 442, pp. 60–66, (2015).
[44]      Gui, M. M., Chai, S. P., Xu, B. Q., Mohamed, A. R., "Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane", Solar Energy Materials & Solar Cells, Vol. 122, pp. 183–189, (2014).
[45]      Low, J., Yu, J., Ho, W., "Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel", The journal of physical chemistry letters, Vol. 6, pp. 4244–4251, (2015).
[46]      Fan, W., Tahir, K. M. "Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: A review", Chemical Engineering Journal, Vol. 427, p. 131617, (2022).
[47]      Li, K., An, X., Park, K. H Khraisheh, M. Tang, J., "A critical review of CO2 photoconversion: Catalysts and reactors", Catalysis Today, Vol. 224, pp. 3–12, (2014).
[48]      Alaba, P. A., Abbas, A., Daud, W. M. W., "Insight into catalytic reduction of CO2: Catalysis and reactor design", Journal of Cleaner Production, Vol. 140,
pp. 1298–1312,(2017).
[49]      Ochedi, F. O., Liu, D., Yu, J. Hussain, A. Liu, Y., "Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review", Environmental Chemistry Letters, Vol. 19, pp. 941–967, (2021).
[50]      Cheng, X., Chen, R., Liao, Q., He , X., Li, S., "Optofluidic membrane microreactor for photocatalytic reduction of CO2", international journal of hydrogen energy, Vol. 41, pp. 2457–2465, (2016) .
[51]      Adekoya, D. O., Tahir, M., and Amin, N. A. S., "G-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light", Journal of CO2 Utilization, Vol. 18, pp. 261–274, (2017).
[52]      Dai, W., Hu, X., Wang, T., Xiong, W., Luo, X., Zou, J., "Hierarchical CeO2 /Bi2MoO6 heterostructured nanocomposites for photoreduction of CO2 into hydrocarbons under visible light irradiation", Applied surface science, Vol. 434, pp. 481–491, (2018).
[53]      Tasbihi, M., Fresno, F., Simon , U., Escudero, C., "On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica", Applied Catalysis B: Environmental, Vol. 239, pp. 68–76, (2018).
[54]      Zhu, Z., Huang, W. R., Chen, C. Y., Wu, R. J. "Preparation of Pd-Au/TiO2-WO3 to enhance photoreduction of CO2 to CH4 and CO", Journal of CO2 Utilization, Vol. 28, pp. 247–254, (2018).
[55]      Mou, Q., Guo, Z. Chai, Y. Liu, B., Liu, C., "Visible-light assisted production of hydrocarbon fuels from carbon dioxide using Cu2O@MnCo2O4 heterojunction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 623, p. 126707, (2021).
[56]      Prachumsai, W., Pangtaisong, S., Assabumrungrat, S., Bunruam. P., Saebea, D., "Carbon dioxide reduction to synthetic fuel on zirconia supported copper-based catalysts and gibbs free energy minimization: Methanol and dimethyl ether synthesis", Journal of Environmental Chemical Engineering, Vol. 9, p. 104979, (2021).,
[57]      Liao, W., Chen, W., Zhu, S., Liang , S., "Rationally designed ultrathin Ni(OH)2/titanate nanosheet heterostructure for photocatalytic CO2 reduction", Green Chemical Engineering, pp. 0–9, (2021).
[58]      Kamal, K. M., Narayan, R., Chandran, N., Kovac, J., Bele, M., Likozar, B., "Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production", Applied Catalysis B: Environmental, Vol. 307, (2022).
[59]      rodriguez, L. I. I., Lu´evano-Hip´olito, E., Collins-Martínez, H., "Formic acid and hydrogen generation from the photocatalytic reduction of CO2 on visible light activated N-TiO2 / CeO2 / CuO composites", Journal of Photochemistry and Photobiology, Vol. 11, (2022).
[60]      Foo, D. C. Y., Tan, R. R., "Process integration approaches to planning carbon management networks", First edition, CRC Press is an imprint of Taylor & Francis Group, LLC, p. 173, (2020).