کاربرد چارچوب فلز- آلی مغناطیسی عامل‌دارشده به‌منظور پایش و اندازه‌گیری آرسنیک در نمونه‌های برنج و تن ماهی مصرفی در بازار ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم صنایع غذایی، گروه علوم تغذیه و صنایع غذایی، دانشکدۀ کشاورزی، دانشگاه آزاد اسلامی واحد کرمانشاه، کرمانشاه،‌ ایران

2 دانشیار زیست‌شناسی، گروه زیست‌شناسی، دانشکدۀ علوم، دانشگاه رازی، کرمانشاه،‌ ایران

3 دانشیار سم شناسی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران

4 استاد زیست‌شناسی، گروه زیست‌شناسی، دانشکدۀ علوم، دانشگاه رازی، کرمانشاه،‌ ایران

چکیده

در این مطالعه یک چارچوب فلز_آلی مغناطیسی عامل ­دارشده با 8- آمینوکینولین بهمنظور پایش و اندازه ­گیری آرسنیک در نمونه­ های برنج و تن ماهی مصرفی در بازار ایران سنتز شد. پس از شناسایی نانوجاذب با روش­های طیف‌­بینی زیر قرمز تبدیل فوریه (FT-IR)، تجزیۀ عنصری، پراش پرتو ایکس (XRD)، میکروسکوپی الکترونی روبشی گسیلمیدانی (FESEM)، میکروسکوپی الکترونی عبوری (TEM)، پراکندگی نور پویا (DLS)، پتانسیل زتا، مغناطیس­ سنجی لرزشی نمونه (VSM) و آنالیز سطح BET، مشخصه‌های مؤثر بر جذب و واجذب بهینه شد. سپس روش مورد نظر اعتبارسنجی شد و در پایان، جاذب سنتزشده برای اندازه ­گیری آرسنیک در    نمونه ­های برنج و تن ماهی مصرفی در بازار ایران، بهکار گرفته ‌شد. براورد شرایط بهینۀ استخراج با استفاده از طراحی آزمایش براساس روش سهسطحی باکس_بنکن در دو مرحلۀ جذب و شویش انجام شد. شرایط بهینۀ استخراج عبارت بودند از pH محلول نمونه: 6/3، زمان جذب: 12 دقیقه، دوز جاذب: 16 میلیگرم، نوع و غلظت حلال شویش: 06/0 مولار نیتریک اسید، زمان شویش: 5/8 دقیقه، حجم حلال شویش: 8/0 میلیلیتر. تحت شرایط بهینه حد تشخیص روش برابر با 01/0 میکروگرم در لیتر به‌دست آمد و روش صحتی خوبی را در تجزیۀ نمونه با غلظت تأییدشده نشان داد. تحت شرایط بهینه، روش مورد نظر بهمنظور پایش و اندازه ­گیری آرسنیک در نمونه­های برنج و تن ماهی مصرفی موجود در بازار ایران، ارزیابی و نتایج بسیار خوبی حاصل شد. از مهم­ترین برتری‌های روش حاضر می ­توان به سرعت، سهولت، صرفه ­جویی در زمان، دقت و صحت بالا اشاره کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of a Functionalized Magnetic Metal-Organic Framework Nanoadsorbent for Extraction/Determination of Arsenic in Rice and Canned Tuna Samples Consumed in the Iranian Market

نویسندگان [English]

  • A. Zanganeh 1
  • H. R. Ghasempour 2
  • M. K. Koohi 3
  • N. Karimi 4
1 Ph. D. Student of Food Science and Technology, Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch Islamic Azad University, Kermanshah, Iran
2 Associate Professor of Biology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran, Corresponding author
3 Associate Professor of Toxicology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
4 Professor of Biology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
چکیده [English]

In this study, a magnetic metal-organic framework functionalized with 8-aminoquinoline was synthesized to monitor and measure arsenic in rice and tuna samples consumed in the Iranian market. After identifying the nanoadsorbent by FT-IR, SEM, TEM, VSM, XRD, CHN, DLS, Zeta potential and BET methods, parameters affecting adsorption and desorption were optimized. Optimization of the extraction process was performed by the experimental design method based on a three levels Box-Behnken design. Then the desired method was validated and finally, the synthesized adsorbent was used to monitor and measure arsenic in rice and tuna samples consumed in the Iranian market. The optimal extraction conditions were: pH of
the sample solution, 3.6; adsorption time, 12 minutes; nanoadsorbent dose, 16 mg; type and concentration of elution solvent, 0.06 M nitric acid; elution time, 8.5 minutes; eluent volume, 0.8 ml. Under the optimal conditions, the detection limit of the method was equal to 0.01 μg/l, and the method exhibited good accuracy in the analysis of the sample with the confirmed concentration.
Under the optimal conditions, the desired method was evaluated in order to monitor and measure arsenic in rice and tuna samples available in the Iranian market, and very good results were obtained.
The most important advantages of the present method are its simplicity, easiness, time saving and high accuracy.

کلیدواژه‌ها [English]

  • Magnetic Metal-Organic Framework
  • Rice and Canned Tuna samples
  • Arsenic
  • Functionalization
  • Monitoring

 

[1]        Ansari, F., Norbaksh, R., & Daneshmandirani, K. (2017). Determination of heavy metals in Iranian and imported black tea. Iran J. Environ. Health Sci. Eng. 4, 243-248.
[2]        Halim, M., Conte, P., & Piccolo, A. (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere, 265-275.
[3]        Kalicanin, B., & Velimirovic, D. (2013). The content of lead in herbal drugs and tea samples, Cent. Eur. J. Biol, 8, 178-185.
[4]        Han, W., Shi, Y., Ma, L., Ruan, J., & Zhao, F. (2007). Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze), Chemosphere, 66, 84-90.
[5]        Gisbert, C., Ros, R., Haro, A., Walker, D. J., Bernal, M. P., Serrano, R., & Navarro-Avino, J. (2003). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun, 303, 440-445.
[6]        Abou-Arab, A. A. K., Ayesh, A. M., Amra, H. A., & Naguib, K. (1996). Characteristic levels of some pesticides and heavy metals in imported fish. Food Chem, 57, 487-492.
[7]        Edmonds, J. S., & Francesconi, K. A. (1993). Arsenic in sea foods: human health aspects and regulations, Marine Pollution, 26, 665-674.
[8]        Occupational Safety and Health Administration.US Department of Labor, Constitution Avenue, NW, Washington, DC, available at: http://www.osha.gov.
[9]        Kerdthep, P., Tongyonk, L., & Rojanapantip, L. (2009). Concentrations of cadmium and arsenic in seafood from Muang district, Rayong province, J. Health Res, 23, 179-184.
[10]      Abbaszadeh, A., & Tadjarodi, A. (2016). Speciation analysis of inorganic arsenic in food and water samples by electrothermal atomic absorption spectrometry after magnetic solid phase extraction by a novel MOF-199/modified magnetite nanoparticle composite, RSC Adv, 6, 113727-113736.
[11]      Luo, J., Xu, F., Hu, J., Lin, P., Tu, J., Wu, X., & Hou, X. (2017). Preconcentration on metal organic framework UiO-66 for slurry sampling hydride generationatomic fluorescence spectrometric determination of ultratrace arsenic, Microchem. J., 133, 441-447.
[12]      Yu, W., Luo, M., Yang, Y., Wu, H., Huang, W., Zeng, K., & Luo, F. (2019). Metal-organic framework (MOF) showing both ultrahigh As (V) and As (III) removal from aqueous solution, J. Solid State Chem., 269, 264-270.
[13]      Akbar, M., & Manoochehri, M. (2019). An efficient 2-mercapto-5-phenylamino-1, 3, 4-thiadiazole functionalized magnetic graphene oxide nanocomposite for preconcentrative determination of mercury in water and seafood samples, Inorg. Chem. Comm., 103, 37-42.
[14]      Larimi, A., Esmaeilpour, M., Ghahramanafshar, M., Faghihi, M., & Asgharinezhad, A. A. (2021). EDTA-functionalized Fe3O4@ SiO2 magnetic nanoadsorbent for divalent cadmium removal from aqueous solutions, J. Appl. Res. Chemical-Polymer Eng., 5, 95-106.
[15]      Ebrahimzadeh Mabood, H., Khalilzadeh, S., Asgharinezhad, A. A., & Mehrani, Z. (2020). Synthesis and application of magnetic ion imprinted polymer nanoparticles for selective extraction and preconcentration of Cd (II) in real samples, Appl. Chem., 15, 135-148.
[16]      Lu, A. H., Salabas, E. E., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem., Int. Ed. Engl. 46, 1222-1244.
[17]      Asgharinezhad, A. A., Ebrahimzadeh, H., Rezvani, M., Shekari, N., & Loni, M. (2014). A novel
4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu (II) and Pb (II) ions from food and water samples, Food Addit. Contam., Part A. 31, 1196-204.
[18]      Jalilian, N., Ebrahimzadeh, H., Asgharinezhad, A. A., & Molaei, K. (2017). Extraction and determination of trace amounts of gold (III), palladium (II), platinum (II) and silver (I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchim. Acta, 184, 2191-2200.
[19]      Jalilian, N., Ebrahimzadeh, H. Asgharinezhad, A. A. (2019). Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography, J. Chromatogr. A., 1608, 460426.
[20]      Barzin, M., & Pooladi, M. (2022). A novel post-synthetic modification of magnetic MIL-101 (Cr) metal-organic framework with 1, 8-diaminonaphthalene chelator and its utilization for separation/determination of cadmium and nickel in food samples, Chem. Pap., 76, 5561-5570.
[21]      Bagheri, H., Asgharinezhad, A. A., & Ebrahimzadeh, H. (2016). Determination of trace amounts of Cd (II), Cu (II), and Ni (II) in food samples using a novel functionalized magnetic nanosorbent. Food Anal. Methods, 9, 876-888.
[22]      Taghizadeh, M., Asgharinezhad, A. A., Samkhaniany, N., Tadjarodi, A., Abbaszadeh, A., & Pooladi, M. (2014). Solid phase extraction of heavy metal ions based on a novel functionalized magnetic
multi-walled carbon nanotube composite with the aid of experimental design methodology, Microchim. Acta, 181, 597-605.
[23]      Asgharinezhad, A. A., Esmaeilpour, M., & Siavoshani, A. Y. (2022). Extraction and preconcentration of Ni (ii), Pb (ii), and Cd (ii) ions using a nanocomposite of the type Fe3O4@SiO2@ polypyrrole-polyaniline. RSC Adv., 12, 19108-19114.
[24]      Veisi, B., Lorestani, B., Sobhan Ardakani, S., Cheraghi, M., & Tayebi, L. (2022). Post synthetic modification of magnetite@MIL-53 (Fe)-NH2
core-shell nanocomposite for magnetic solid phase extraction of ultra-trace Pd (II) ions from real samples, Int. J. Environ. Anal. Chem., 131, 1-8.
[25]      Veisi, B., Lorestani, B., Sobhan Ardakani, S., Cheraghi, M., & Tayebi, L. (2021). Synthesis of magnetite@MIL‐53 (Fe)‐NH‐CS2 via postsynthetic modification for extraction/separation of ultra‐trace Hg (II) from some real samples and its subsequent quantification by CVAAS. Appl. Organometal. Chem., 35, e6351.
[26]      Asgharinezhad, A. A., & Ebrahimzadeh, H. (2016). Poly (2-aminobenzothiazole)-coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample.J. Chromatogr, A. 1435, 18-29.
[27]      Davari, S. D., Rabbani, M., Basti, A. A., & Koohi, M. K. (2021). Determination of furfurals in baby food samples after extraction by a novel functionalized magnetic porous carbon, RSC Adv., 12, 21181-21190.
[28]      Mosayebi, M., & Mirzaee, H. (2014).  Determination of Mycotoxin Contamination and Heavy Metals in Edible Rice Imported to Golestan Province. Iran.
J. Health Saf. Environ.,
6, 503-514.
[29]      Uluozlu, O. D., Tuzen, M., Mendil, D., & Soylak, M. (2010).Determination of As (III) and As (V) species in some natural water and food samples by
solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem. Toxicol, 48, 1393-1398.
[30]      Abdolmohammad-Zadeh, H., & Talleb, Z. (2014). Speciation of As (III)/As (V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection, Talanta, 128, 147-155.
[31]      Tuzen, M., Saygi, K. O., Karaman, I., & Soylak, M. (2010). Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food Chem. Toxicol, 48, 41-46.
[32]      Peng, H., Zhang, N., He, M., Chen, B., & Hu, B. (2015). Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS. Talanta, 131, 266-272.