بررسی اثر دما بر ریخت‌شناسی نانوذرات نقرۀ سنتزشده با عصارۀ نعناع فلفلی و ارزیابی خواص آنتی‌باکتریال آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مهندسی شیمی، دانشگاه زنجان

2 استادیار مهندسی مواد، دانشگاه زنجان

چکیده

استفاده از عصارۀ گیاهی در سنتز سبز نانوذرات نقره، به‌دلیل حضور ترکیبات پوشش‌دهنده و کاهندۀ طبیعی در عصاره نقش مؤثری در ریخت‌شناسی و پایداری نانوذرات سنتزشده دارد. در این پژوهش نانوذرات نقره با استفاده از محلول نیترات نقره در مجاورت عصارۀ نعناع فلفلی سنتز شد. اثر دما و pH بر روی ریخت‌شناسی و خلوص ذرات تشکیل‌شده بررسی شد. برای بررسی مشخصات ذرات تشکیل‌شده از آزمون پراش پرتو ایکس، طیف‌سنجی مرئی-فرابنفش، طیف‌سنجی پراش انرژی و تصاویر میکروسکوپ الکترونی روبشی استفاده شد. هم‌چنین به‌منظور بررسی کارایی نانوذرات نقرۀ سنتزشده، از دو باکتری اشرشیاکلی (E.coli ) و استافیلوکوکوس آرئوس (S.aureus) در آزمون آنتی‌باکتریال استفاده شد. در محلول واکنش شامل نیترات نقره با غلظت mM 3 و نسبت گیاه به حلال g/mL 05/0 نانوذره‌ای در دمای محیط تشکیل نشد؛ ولی در همین محلول واکنش با بالارفتن دما تا °C 70، ترکیبی از نانوذرات کروی، صفحه‌‌ای‌شکل و سه‌گوش تشکیل شدند. هم‌چنین با افزایش دما تا °C 90 نانوذرات کروی با اندازۀ ذرات کوچک‌تر تشکیل شدند. هر دو نوع نانوذرۀ تولیدشده در دمای °C 70 و 90 نسبت به رشد دو باکتری گرم مثبت و گرم منفی استفاده‌شده، اثر ممانعت در رشد داشتند؛ اما ذرات کروی سنتزشده در °C 90 و در pH برابر با 9 نسبت به باکتری E.coli و S.aureus به‌ترتیب هالۀ عدم رشدی با قطر mm 20/0±14 و 50/0±14 تشکیل دادند که نسبت‌به ذرات صفحه‌ای‌شکل اثر ممانعت رشد بیشتری داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Temperature on the Morphology of Synthesized Silver Nanoparticles Using Peppermint Extract and Evaluation of Its Antibacterial Properties

نویسندگان [English]

  • M. Yaghoobi 1
  • Fatemeh Asjadi 2
1 Assistant Professor of Chemical Engineering, University of Zanjan
2 Assistant Professor of Materials Engineering, University of Zanjan
چکیده [English]

The use of the plant extracts in green synthesis of silver nanoparticles due to the presence of natural coating and reducing bio-compounds in the extract has an affective role on the morphology and stability of synthesized nanoparticles. In this study, silver nanoparticles were synthesized using silver nitrate in the presence of the peppermint extract. The effect of temperature and pH on the size, purity and morphology of nanoparticles was assessed. X-ray diffraction, UV–visible spectrophotometry, energy diffraction spectroscopy and scanning electron microscopy images were used to study the characteristics.
In order to evaluate the performance of synthesized nanoparticles, Escherichia coli and Staphylococcus aureus were used in antibacterial assay. No nanoparticles were formed at room temperature with 3 mM silver nitrate and the peppermint extract (solid to solvent ratio of 0.05 g/mL). The nanometer-thick sheets were formed at 70 ℃, and spherical nanoparticles were formed by increasing the synthesis temperature to 90
°C Both sheet and spherical nanoparticles had an inhibitory effect on the growth of both gram-positive and gram-negative bacteria used, but the spherical particles synthesized at 90°C had a significant inhibition effect than the sheet particles.

کلیدواژه‌ها [English]

  • Silver Nanoparticles
  • Morphology
  • Antibacterial Activity
  • Peppermint Extract

 

[1]        Sondi, I., Goia, D. V., Matijević, E., "Preparation of highly concentrated stable dispersions of uniform silver nanoparticles", Journal of colloid and interface science, 260(1), pp. 75-81, (2003).
[2]        Sarkar, S., Kotteeswaran, V., "Green synthesis of silver nanoparticles from aqueous leaf extract of pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells", Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(2), pp. 1-11, (2018).
[3]        Chung, I. M., Park, I., Seung-Hyun, K., Thiruvengadam, M., Rajakumar, G., "Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications", Nanoscale research letters, 11(1), pp. 1–14, (2016).
[4]        AlSalhi, M. S., Devanesan, S., Alfuraydi, A. A., Vishnubalaji, R., Munusamy, M. A., Murugan, K., Benelli, G., "Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells", International journal of nanomedicine, 11, pp. 4439-4449,‏ (2016).
[5]        He, Y., Du, Z., Ma, S., Cheng, S., Jiang, S., Liu, Y., Zheng, X., "Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract", Nanoscale research letters, 11(1), pp. 1-10, (2006).
[6]        Arokiyaraj, S., Arasu, M. V., Vincent, S., Prakash, N. U., Choi, S. H., Oh, Y. K., Kim, K. H., "Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study", International Journal of Nanomedicine, 9: pp. 379–388, (2014).
[7]        Deng, Z., Chen, M., Wu, L., "Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties", The Journal of Physical Chemistry C, 111(31), pp. 11692-11698, (‏2007).
[8]        Wei, H., Li, J., Wang, Y., Wang, E., "Silver nanoparticles coated with adenine: preparation, self-assembly and application in surface-enhanced Raman scattering", Nanotechnology, 18(17), pp. 1-5, (2007).
[9]        Bhattacharya, R., Mukherjee, P., "Biological properties of ‘naked’ metal nanoparticles", Advanced Drug Delivery Reviews, 60(11), pp. 1289–1306, (2008).
[10]      Hebeish, A., Shaheen, T. I., El-Naggar, M. E., "Solid state synthesis of starch-capped silver nanoparticles", International journal of biological macromolecules, 87: pp. 70-76, (2016).‏
‏[11]      Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., El-Sayed, M. A., "Shape-controlled synthesis of colloidal platinum nanoparticles", Science, 272, pp. 1924–1926, (1996).
[12]      Roy, A., Bulut, O., Some, S., Mandal, A. K., Yilmaz, M. D., "Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity", RSC advances, 9(5),
pp. 2673-2702, (2019).‏
[13]      Ijaz, I., Bukhari, A., Gilani, E., Nazir, A., Zain, H., Saeed, R., "Green synthesis of silver nanoparticles using different plants parts and biological organisms, characterization and antibacterial activity", Environmental Nanotechnology, Monitoring & Management, 18, p. 100704, (2022). ‏
[14]      Yadav, J., Chauhan, P., "Green synthesis of silver nanoparticles using Citrus X sinensis (Orange) fruit extract and assessment of their catalytic reduction", Materials Today: Proceedings. (2022).
[15]      Farshori, N. N., Al-Oqail, M. M., Al-Sheddi, E. S., Al-Massarani, S. M., Saquib, Q., Siddiqui, M. A., Al-Khedhairy, A. A., "Green synthesis of silver nanoparticles using Phoenix dactylifera seed extract and its anticancer effect against human lung adenocarcinoma cells", Journal of Drug Delivery Science and Technology, 70, p. 103260, (2022).‏
[16]      Waterhouse, A. L., "Determination of total phenolics. Current protocols in food analytical chemistry", In Current Protocols in Food Analytical Chemistry, 6(1), 1-8, (2002).
[17]      Holland, T. J. B., Redfern, S. A. T., "Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics", Mineralogical Magazine, 61, pp. 65-77, (1997).
[18]      Zhang, H., Bai, X., Wu, B., "Evaluation of antimicrobial activities of extracts of endophytic fungi from Artemisia annua", Bangladesh Journal of Pharmacology, 7(2), pp. 120–123, (2012).
[19]      Williamson, G. K., Hall, W. H., "X-Ray Line Broadening from Filed Aluminium and Wolfram", Acta Metallurgica, 1, pp. 22-31, (1953).
[20]      Chaoying, N., Puthusserickal, A., H., Eric W. K., "Structural Characteristics and Growth of Pentagonal Silver Nanorods Prepared by a Surfactant Method", Langmuir, 21, pp. 3334-3337, (2005).
[21]      Loo, Y. Y., Chieng, B. W., Nishibuchi, M., Radu, S., "Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis", International Journal of Nanomedicine, 7, pp. 4263–4267, (2012).
[22]      Lee, K., C., Lin, S., J., Lin, C., H., Tsai, C., S., Lu, Y., J., "Size effect of Ag nanoparticles on surface plasmon resonance", Surface and Coatings Technology, 202, pp. 5339–5342, (2008).
[23]      Wang, M., Li, H., Li, Y., Mo, F., Li, Z., Chai, R., Wang, H., "Dispersibility and size control of silver nanoparticles with anti-algal potential based on coupling effects of polyvinylpyrrolidone and sodium tripolyphosphate",  Nanomaterials, 10(6), pp. 1-15, (2020).
[24]      Shenashen, M. A., El‐Safty, S. A., Elshehy, E. A., "Synthesis, morphological control, and properties
of silver nanoparticles in potential applications", Particle & Particle Systems Characterization, 31(3), pp. 293-316, (2014).
[25]      Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W., "Size control over spherical silver nanoparticles by ascorbic acid reduction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372,
pp. 172–176, (2010).
‏‏[26]      Alqadi, M. K., Abo Noqtah, O. A., Alzoubi, F. Y., Alzouby, J., Aljarrah, K., "pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction", Materials Science-Poland, 32, pp. 107–111, (2014).
[27]      Khodashenas, B., Ghorbani, H. R., "Synthesis of silver nanoparticles with different shapes", Arabian Journal of Chemistry, 12(8), pp. 1823-1838, (2019).‏
[28]      Cobley, C. M., Skrabalak, S. E., Campbell, D. J., Xia, Y., "Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications", Plasmonics, 4: pp. 171–179, (2009).
[29]      Murphy, C. J., Jana, N. R., "Controlling the aspect ratio of inorganic nanorods and nanowires", Advanced Materials, 14, pp. 80–82, (2002).
[30]      Mohammadzadeh, S. E., Faghiri, F., Ghorbani, F., "Green synthesis of phenolic capping Ag NPs by green walnut husk extract and its application for colorimetric detection of Cd2+ and Ni2+ ions in environmental samples", Microchemical Journal, 179, p. 107475, (2022).
[31]      Wypij, M., Świecimska, M., Dahm, H., Rai, M., Golinska, P., "Controllable biosynthesis of silver nanoparticles using actinobacterial strains", Green Processing and Synthesis, 8(1), pp. 207-214, (2019).
‏[32]      Jiu, J., Murai, K., Kim, D., Kim, K., Suganuma, K., "Preparation of Ag nanorods with high yield by polyol process", Materials Chemistry and Physics, 114(1), pp. 333-338, (2009).
‏[33]      Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M., Tsuji, T., "Microwave-assisted synthesis of metallic nanostructures in solution", Chemistry–A European Journal, 11(2), pp. 440-452, (2005).
[34]      Liu, B., Yan, H., Chen, S., Guan, Y., Wu, G., Jin, R., Li, L., "Stable and controllable synthesis of silver nanowires for transparent conducting film", Nanoscale Research Letters, 12(1), pp. 1-6, (2017).
[35]      Jiang, X. C., Chen, W. M., Chen, C. Y., Xiong, S. X., Yu, A. B., "Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach", Nanoscale Research Letters, 6(1), pp. 1-9, (2011). ‏
[36]      Liu, H., Zhang, H., Wang, J., Wei, J., "Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis", Arabian Journal of Chemistry, 13(1), pp. 1011-1019, (2020).‏
[37]      Bawazeer, S., Rauf, A., Shah, S., U., A., Shawky, A., M., Al-Awthan, Y., S., Bahattab, O., S., El-Esawi, M., A., "Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies", Green Processing and Synthesis, 10(1), pp. 85-94, (2021).‏
[38]      Bruniera, J., F., B., Gabriel-Silva, L., Goulart, R., S., Silva-Sousa, Y., T., C., Lara, M., G., Pitondo-Silva, A., Miranda, C., E., S., "Green synthesis, characterization and antimicrobial evaluation of silver nanoparticles for an intracanal dressing", Brazilian Dental Journal, 31, pp. 485-492, (2020).
[39]      Kredy, H., M., "The effect of pH, temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract", Journal of Pharmaceutical Sciences and Research, 10(8), pp. 2022-2026, (2018).‏
[40]      Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., Lin, M., "Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities", Colloids and Surfaces B: Biointerfaces, 171, pp. 398–405, (2018).
[41]      Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V. R., Sultan, A., Mijakovic, I., "Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition", International Journal of Nanomedicine, 13, pp. 3571–3591, (2018).
[42]      Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L.,
Li, Q., Chu, C. H., "The antibacterial mechanism of silver nanoparticles and its application in dentistry", International Journal of Nanomedicine, 15, pp. 2555-2562, (2020).