مروری بر اثر تنش‌های مختلف بر تولید آنتی‌اکسیدان به‌وسیلۀ جلبک دونالیلا

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، دانشگاه صنعتی سهند

2 دانشیار مهندسی شیمی، دانشگاه صنعتی سهند

چکیده

زیست‌تودۀ ریزجلبک به‌عنوان یک خوراک پایدار برای تولید ترکیبات با ارزش بالا مانند آنتی‌اکسیدان‌های آنزیمی و غیرآنزیمی در نظر گرفته می‌شود که به‌طور گسترده برای مواد غذایی، دارویی، نساجی، چرم و هم‌چنین در صنایع شیمیایی استفاده می‌شود. افزایش عملکرد ریزجلبک، دست‌یابی به شرایط بهینۀ کشت، ذخیره‌سازی بهینۀ مولکول‌های آنتی‌اکسیدانی پس از پردازش و پردازش پایین‌دستی با صرفه‌جویی در انرژی از جمله موانع اصلی برای تولید آنتی‌اکسیدان‌هاست. امروزه، ترکیبات آنتی‌اکسیدانی تولیدشده با ریزجلبک‌ها درنتیجۀ اعمال شرایط استرس، به‌عنوان محصولاتی پراهمیت برای سلامتی بشر، توجه تجاری پیدا کرده است. استرس اکسیداتیو ناشی از اسیدیته، فلزات، پرتو ماورای بنفش و دما می‌تواند باعث تولید آنتی‌اکسیدان در بسیاری از گونه‌های مختلف ریزجلبک‌ها مانند جلبک دونالیلا شود. کشت جلبک دونالیلا، دارای چندین برتری از جمله نرخ رشد بالا، هزینۀ تولید پایین و هم‌چنین توانایی رشد در شرایط استرس‌زا مانند غلظت بالای نمک، شدت نور بالا و محدودیت نیتروژن است. این مقاله، یک بررسی کلی از تولید آنتی‌اکسیدان‌ها در متابولیسم سلولی ریزجلبک‌ دونالیلا، فعالیت آنزیم‌های آنتی‌اکسیدان POD)، SOD،(CAT و استراتژی‌هایی برای افزایش تجمع آنتی‌اکسیدان در ریزجلبک‌ها ارائه می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Effects of Different Stresses on Antioxidants Production by Dunaliella Algae

نویسندگان [English]

  • L. Nedaei 1
  • H. Shokrkar 2
1 Ph. D. Student of Chemical Engineering, Sahand University of Technology
2 Associate Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

Microalgae biomass is considered as a sustainable feed for the production of high value compounds such as enzymatic and non-enzymatic antioxidants that are widely used in food, pharmaceutical, textile, leather as well as in the chemical industry. Increasing the yield of microalgae, achieving optimal culture conditions, optimal storage of antioxidant molecules after processing and downstream processing with energy saving are among the main obstacles to the production of antioxidants. Today, antioxidant compounds produced by microalgae as
a result of stressful conditions, as important products in the field of human health, have received commercial attention. Oxidative stress due to acidity, metals, UV and temperature can cause the production of antioxidants in many different species of microalgae such as Dunaliella algae. Dunaliella algae cultivation has several advantages, including high growth rate, low production cost, as well as the ability to grow in stressful conditions such as high salt concentrations, high light intensity, and nitrogen restriction. This article provides an overview of the production of antioxidants in the Dunaliella microalgae cellular metabolism, the activity of antioxidant enzymes (POD, SOD, CAT) and strategies to increase antioxidant accumulation in microalgae.

کلیدواژه‌ها [English]

  • Microalgae
  • Antioxidant
  • Stress
  • Dunaliella Algae
  • Culture Medium
[1]        Karawita, R., Senevirathne, M., Athukorala, Y., Affan, A., Lee, Y. J., Kim, S. K., Lee, J. B., Jeon, Y. J., "Protective Effect of Enzymatic Extracts from Microalgae Against DNA Damage Induced by H2O2", Biotechnology. Vol. 9, pp. 479–490, (2007).
[2]        Singh, S., Kate, B.N., Banerjee, U.C., "Bioactive Compounds from Cyanobacteria and Microalgae: An Overview", Renewable and Sustainable Energy Reviews. Vol. 25, pp. 73–95, (2005).
[3]        Shebis, Y., Iluz, D., Kinel-Tahan, Y., Dubinsky, Z., Yehoshua, Y., "Natural Antioxidants: Function and Sources", Food Natural, science. Vol. 4, pp. 643–649, (2013).
[4]        Lordan, S., Ross, R. P., Stanton, C.,"Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases", Makara Journal of Technology. Vol. 9,
pp. 1056–1100, (2011).
[5]        Li, K., Li, X. M., Ji, N. Y., Wang, B. G., "Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): Structural elucidation and DPPH radical-scavenging activity. Bioorg", Makara Journal of Technology. Vol. 15, pp. 6627–6631, (2007).
[6]        MacArtain, P., Gill, C.I.R., Brooks, M., Campbell, R., Rowland, I.R., "Nutritional Value of Edible Seaweeds", Iranian Journal of Natural Resources. Vol. 65, pp. 535–543, (2007).
[7]        Hu, C. C., Lin, J. T., Lu, F. -J., Chou, F. -P., Yang, D. J., " Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract", Food chemistry. Vol. 109, pp. 439–446, (2008).
[8]        Cha, K. H., Lee, H. J., Koo, S. Y., Song, D. G., Lee, D. U., Pan, C. -H., "Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from Chlorella vulgaris", Journal of agricultural and food chemistry. Vol. 58, pp. 793–797, (2010).
[9]        Bocanegra, A., Bastida, S., Benedí, J., Ródenas, S., Sánchez-Muniz, F. J., "Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds", Makara Journal of Technology. Vol. 12, pp. 236–258, (2009).
[10]      Brewer, M. S., "Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Application", Comprehensive reviews in food science and food safety. Vol. 10, pp. 221–247, (2011).
[11]      Bong, S. C., Loh, S. P., " A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction", Institution Food Resources. J. Vol. 20, pp. 721–729, (2013).
[12]      Sui, Y., Vlaeminck, S. E., "Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset", Trends Biotechnol. Vol. 38, pp. 10–12, (2020).
[13]      Mogharabi, M., Faramarzi, M. A., "Are algae the future source of enzymes? Trends Peptide Protein Sci", Institution of Chemical Engineers . Vol. 1, No. 1, pp. 1–6, (2021).
[14]      Marrone, B. L. Lacey, R. E., Anderson, D. B., Bonner, J., Coons, J., Dale, T., Meghan Downes, C. M., Fernando, S., Fuller, Ch., Goodall, B., Holladay, J. E., Kadam, K., Kalb, D., Liu, W., Mott, J. B., Nikolov, Z., Ogden, K. L., Sayre, R. T., Trewyn, B. G., Olivares, J. A., "Review of the harvesting and extraction program within the national alliance for advanced biofuels and bioproducts", Elsevier Algal Research. Vol. 33, pp. 470–485, (2020).
[15]      Khanra, S., "Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod. Process", Institution of Chemical Engineers. Vol. 110, pp. 60–84, (2021).
[16]      Singh, R., Kumar, M., Mittal, A., Kumar, P., "Microbial enzymes: Industrial progress in 21st century", 3 Biotech. Vol. 6, pp. 1–15, (2016).
[17]      Villarruel-López, A., Ascencio, F., Nuño, K., "Microalgae, a Potential Natural Functional Food Source—A Review", Polish Iranian Journal of Natural Resources. Vol. 67, pp. 251–263, (2017).
[18]      Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K.," Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed", Iranian Research. Vol. 25, p. 761264, (2014).
[19]      Panda, S. K., "Assay Guided Comparison for Enzymatic and Non-Enzymatic Antioxidant Activities with Special Reference to Medicinal Plants", In Antioxidant Enzyme; Intech: Rijeka, Croatia. Vol. 14, pp. 381–400, (2021).
[20]      Gill, S. S., Tuteja, N., "Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants", Plant Physiology Biocheistry. Vol. 48, pp. 909–930, (2010).
[21]      Mtaki, K., Kyewalyanga, M. S., Mtolera, M. S. P., "Assessment of antioxidant contents and free radical-scavenging capacity of chlorella vulgaris cultivated in low cost media", Applied Sciences. Vol. 10, p. 8611, (2020).
[22]      Rezayian, M., Niknam, V., Ebrahimzadeh, H., "Oxidative damage and antioxidative system in algae". Toxicology reports. Vol. 6, pp. 1309–1313, (2019).
[23]      Nimse, S. B., Pal, D., "Free radicals, natural antioxidants, and their reaction mechanisms", RSC advances. Vol. 5, pp. 27986–28006, (2015).
[24]      Rahman, K., "Studies on free radicals, antioxidants, and co-factors", Clinical interventions in aging. Vol. 2, pp. 219–236, (2007).
[25]      Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., Dwivedi, U. N., "A Comprehensive Review on Function and Application of Plant Peroxidases", Biochem Anal Biochem. Vol. 6, pp. 1–16, (2017).
[26]      Jegannathan, K. R., Nielsen, P. H,. "Environmental assessment of enzyme use in industrial production-a literature review", Journal of cleaner production.
Vol. 42, pp. 228–240, (2020).
[27]      Godic, A., Poljšak, B., Adamic, M., Dahmane, R., "The role of antioxidants in skin cancer prevention and treatment", Oxidative medicine and cellular longevity. Vol. 2, p. 860479, (2014).
[28]      Allemann, I. B., Baumann, L., " Antioxidants used in skin care formulations" , Skin Therapy Lett. Vol. 13, pp. 5–9, (2008).
[29]      Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., Gnanaraj, C., " An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement", Journal of Functional Foods. Vol. 68, p. 103917, (2020).
[30]      Raveendran, S., Kuruvilla, A., Rebello, S., "Applications of Microbial Enzymes in Food Industry", Food technology and biotechnology. Vol. 56, pp. 16–30, (2018).
[31]      Schillaci, C., Nepravishta, R., Bellomaria, A., "Antioxidants in food and pharmaceutical research", Albanian Food technology and biotechnologyi. Vol. 1, pp. 15–25, (2019).
[32]      Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T., Tatematsu, M.," Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis", Food and Chemical Toxicology. Vol. 24, pp. 1071–1082, (1986).
[33]      Thompson, D. C., Trush, M. A., "Studies on the mechanism of enhancement of butylated hydroxytoluene-induced mouse lung toxicity by butylated hydroxyanisole", Toxicology and applied pharmacology. Vol. 96, pp. 122–131, (1988).
[34]      Krishnamurthy, P., Wadhwani, A., "Antioxidant Enzymes and Human Health", Antioxidant enzyme. Vol. 1, pp. 3–18, (2012).
[35]      Thorat, I. D., Jagtap, D. D., Mohapatra, D., Joshi, D. C., Sutar, R. F., Kapdi, S. S., "Antioxidants, their properties, uses in food products and their legal implications", International Journal of Food Studies. Vol. 2, pp. 81–104, (2021).
[36]      El Shafey, H. M., Bahashwan, S. A., Alghaithy, A. A., Ghanem, S.," Microbial superoxide dismutase enzyme as therapeutic agent and future gene therapy", Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. Vol. 1, pp. 435–443, (2010).
[37]      Surai, P., Surai, P. F., " Antioxidant Systems in Poultry Biology: Superoxide Dismutase", Journal of Animal Research and Nutrition. Vol. 1, pp. 1–17, (2015).
[38]      Gridley, D. S., Green, L. M., Nelson, G. A., Pecaut, M.J., Slater, J. M., "Therapeutic Utilities of SOD Mimetics: Cancer, Radiotherapy and SOD Mimetics. In Madame Curie Bioscience Database", Landes Bioscience: Austin, TX, USA, Vol. 2, pp. 1132-1136, (2013).
[39]      Barrita, J., Sánchez, M., "Antioxidant Role of Ascorbic Acid and His Protective Effects on Chronic Diseases. Oxidative Stress Chronic Degener", Oxidative Stress Chronic Degener. Dis. Role Antioxid . Vol. 2, pp. 450–484, (2021).
[40]      Bhalamurugan, G. L., Valerie, O., Mark, L.," Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review",. Environmental Engineering Research. Vol. 23, pp. 229–241, (2020).
[41]      Vinayagam, R., Xu, B. ,"Antidiabetic properties of dietary flavonoids: A cellular mechanism review", Nutrition & metabolism. Vol. 12, pp. 1–20, (2015).
[42]      Jiang,W., Wei, H., He, B.,"Dietary flavonoids intake and the risk of coronary heart disease: A dose-response meta-analysis of 15 prospective studies", Thrombosis research. Vol. 135,
pp. 459–463, (2015).
[43]      Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M. S., "An overview: Biomolecules from microalgae for animal feed and aquaculture", Journal of Biological Research-Thessaloniki. Vol. 21, pp. 5-6, (2014).
[44]      Morón, Ú. M., Castilla-Cortázar, I., "Protection Against Oxidative Stress and “IGF-I Deficiency Conditions”", Antioxidant Enzyme. Vol. 3, pp.1135-1140, (2012).
[45]      Aebi, H., "Catalase in vitro", Methods in enzymology. Vol. 105, pp. 121-126, (1984).
[46]      Zhang, Y. K., Zhu, D. F., Zhang, Y. P., Chen, H. Z., Xiang, J., Lin, X. Q., "Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings", PloS one. Vol. 10, No. 2, p. 116971, (2015).
[47]      Abeles, F. B., Charles L., "Characterization of peroxidases in lignifying peach fruit endocarp ", Plant physiology. Vol. 95, No. 1, pp. 269-273, (1991).
[48]      Roy, U K., Birthe V., John, J., "Effect of post-harvest conditions on antioxidant enzyme activity in Dunaliella tertiolecta biomass", Biocatalysis and Agricultural Biotechnology. Vol. 27, p. 101661 (2020).
[49]      Giannopolitis, C. N., Stanley K. R., "Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings ", Plant physiology . Vol. 59, No. 2, pp. 315-318, (1977).
[50]      Juneja, A., Ceballos, R. M., Murthy, G. S., " Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review", Energies. Vol. 6, pp. 4607–4638, (2013).
[51]      Landsberg, J., Sands, P., "Weather and energy balance, in: Terr", Terrestrial Ecology. Vol. 4, pp. 13-48, (2011).
[52]      Bonente, G., Pippa S., Castellano, S., Bassi, R., Ballottari, M., "Acclimation of Chlamydomonas reinhardtii to different growth irradiances", Journal of Biological Chemistry. Vol. 287, pp. 5833–5847, (2012).
[55]      Singh, R., Upadhyay, A. K., Singh, D. V., Singh, J. S., Singh, D. P., " Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure, International Journal of Phytoremediation. Vol. 1, pp. 65–77, (2021).
[54]      Rastogi, R. P., Madamwar, D., Nakamoto, H., "Incharoensakdi Resilienc and self-regulation processes of microalgae under UV radiation stress", Journal of Photochemistry and Photobiology C: Photochemistry Reviews. Vol. 1, pp. 77-79, (2019).
[55]      Stengel, D. B., Connan, S., Popper, Z. A., "Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application", Biotechnology advances. Rev. Vol. 29, pp. 483–501, (2011).
[56]      Tian, J., Yu, J., "Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation", Journal of Photochemistry and Photobiology B: Biology. Vol. 79, pp. 152–160 (2009).
[57]      Proch´azkov´a, G., Br´anyikov´a, I., Zachleder, V., Br´anyik, T., "Effect of nutrient supply status on biomass composition of eukaryotic green microalgae" Journal of applied phycology. Vol. 26, pp. 1359–1377 (2019).
[58]      Chokshi, K., Pancha, I., Ghosh, A., Mishra, S., "Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus", Biotechnology for biofuels. Vol. 10, pp.60-61 (2017).
[59]      Ruiz-Domínguez, M. C., Vaquero, I., Obreg´on, V., de la Morena, B., Vílchez, C., Vega, J. M., "Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation", Journal of Applied Phycology. Vol. 27, pp. 1099–1108 (2020).
[60]      Leal, J., Teixeira-Santos, L., Pinho, D., Afonso, J., Carvalho, J., de Lourdes Bastos, M., Albino-Teixeira, A., Fraga, S., Sousa, T., "L-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin II in rats", Nitric Oxide. Vol. 82, pp. 1–11, (2019).
[61]      Kamali, M., Shariaty, M., Madadkar, M., "Effect of Iron on cell division and intracellular beta-carotene and chlorophyll synthesis in unicellular green alga Dunaliella" , Journal of Cell & Tissue . Vol. 5, No. 2, pp.207-215, In Persian , (2020).
[62]      Michalak, F., "Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress", Plant Cell. Vol. 15, pp. 523–530, (2006).
[63]      Hazani, A. A., Ibrahim, M. M., Shehata, A. I., El-Gaaly, G. A., Daoud, M., Fouad, D., Rizwana, H., Moubayed, N., "Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta", Archives of Biological Sciences. Vol. 65, pp. 1447–1457, (2013).
[64]      Zamani, N., Rasekh, F., Moradshahi, A., Kholdebarin, B., "Physiological responses of Dunaliella tertiolecata to Hg2+-induced oxidative stress" Iran. Archives of Biological Sciences. Vol. 33, pp. 65–74, (2021).
[65]      Nikookar, K., Moradshahi, A., Hosseini, L., "Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity", Biomolecular Engineering. Vol. 22, pp. 141–146, (2005).
[66]      Liang, Y., Sarkany, N., Cui, Y., "Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions", Biotechnology letters . Vol. 31, pp. 1043–1049, (2020).
[67]      Sharma, S. S., Dietz, K. J.," The relationship between metal toxicity and cellular redox imbalance", Trends in plant science. Vol. 14, pp. 43–50, (2020).
[68]      Rezaeeyan, M., Faramarzi, M. A., Niknam, V., Ebrahimzadeh, H. "Effect of salt stress on growth, lipid peroxidation, antioxidant enzymes and phycobiliproteins in two species of Nostoc" , Journal of Plant Research. (Iranian Journal of Biology). Vol. 27, No. 4, pp. 661-673, In Persian, (2015).
[69]      Haghjou, M. M., Shariati, M., Pozveh, M. H., "The effect of low light intensities on oxidative stress induced by short-term chilling in Dunaliella salina teod", Archives of Biological Sciences. Vol. 9, pp. 2048–2054, (2006).
[70]      Haghjou, M. M., Shariati, M., Smirnoff, N.,"The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol", Physiologia Plantarum. Vol. 135, pp. 272–280, (2009).
[71]      Sanobari, Z., Jafari, S., Ebrahimzadeh, M. A., "Effect of Nickel and Acidity on Antioxidant Activity, Total Phenolic and Flavonoid Content of Algae Cladofora Glomerrata", Journal of Environmental Science and Technology. Vol. 16, No. 2, pp. 129-138, In Persian (2014).
[72]      Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A., "A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids", Frontiers in microbiology. Vol. 7,pp. 1–19, (2016).
[73]      Tammam, A. A., Fakhry, E. M., El-sheekh, M., "Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta", African Journal of Biotechnology. Vol. 10, pp. 3795–3808, (2011).
[74]      Mishra, A., Mandoli, A., Jha, B., "Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan", Journal of industrial microbiology and biotechnology. Vol. 35, pp. 1093–1101, (2008).
[75]      Einali, A., Valizadeh, J., "Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing carotene production", Acta Physiologiae Plantarum. Vol. 37, pp. 1–11, (2021).
[76]      Shick, J. M., Dunlap, W. C., "Mycosporine-like amino acids and related gadusols: Biosynthesis, acumulation, and UV-protective functions in aquatic organisms", Annual review of Physiology . Vol. 64, pp. 223–262, (2002).
[77]      Asada, K., "The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons", Annual review of plant biology. Vol. 50, pp. 601–639, (1999).
[78]      Janknegt, P. J., De Graaff, C. M., Van De Poll, W. H., Visser, R. J. W., Helbling, E. W., Buma, A. G. J., "Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural uv radiation", Plant physiology and biochemistry. Vol. 85, pp. 1336–1345, (2009).
[79]      Hanaa, H., El Baz, F. K., El-Baroty, G. S., "Production of Antioxidant by the Green Alga Dunaliella salina", Annual review of Physiology. Vol. 6, pp. 49–57, (2004).
[80]      Alizadeh, G. I., Aliev, I. I., "Magerramova, K. K.; Galandarli, I. Z., Dibirova, G. H., Jalilova, A. R., "The response reaction of Dunaliella cells against the influence of Methylene blue and Norflurazon under the low temperature stress conditions", Applied Sciences. Vol. 3, pp. 7–10, (2015).
[81]      Lv, H., Cui, X., Wahid, F., Xia, F., Zhong, C., Jia, S., "Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation", PLoS ONE. Vol. 11, pp. 152-160, (2016).
[82]      Saha, S. K., Moane, S., Murray, P., "Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18", Bioresource technology. Vol. 147, pp. 23–28, (2021).
[83]      Arun, N., Vidyalaxmi, V., Singh, D. P., "Chromium (VI) induced oxidative stress in halotolerant alga Dunaliella salina and D. tertiolecta isolated from sambhar salt lake of Rajasthan (India)", Cellular and Molecular Biology. Vol. 60, pp. 90–96, (2014).
[84]      Yu, X., Chen, L., Zhang, W., "Chemicals to enhance microalgal growth and accumulation of high-value bioproducts", Frontiers in microbiology. Vol. 6, pp. 1–10, (2015).
[85]      Tappel, A. L., "Glutathione peroxidase and hydroperoxides", in Methods Enzymol. Vol. 52, pp. 506–513, (1978).
[86]      Al-Rashed, S. A., Ibrahim, M. M., El-Gaaly, G. A., Al-Shehri, S., Mostafa, A.,"Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation", Saudi journal of biological sciences. Vol. 23, No. 2, pp. 706-710, (2019).
[87]      Jajic, I., Sarna, T., Strzalka, K., "Senescence, Stress, and Reactive Oxygen Species". Plants.Vol. 4,pp. 393-411, (2020).
[88]      Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W., Park, M. S., Yang, J. W., "Methods of downstream processing for the production of biodiesel from microalgae", Biotechnology advances. Vol. 31, pp. 862–876, (2013).
[89]      Roy, M., Mohanty, K., "A comprehensive review on microalgal harvesting strategies: Current status and future prospects", Algal Research. Vol. 44, pp. 101-110, (2019).
[90]      Najjar, Y. S., Abu-Shamleh, A., "Harvesting of microalgae by centrifugation for biodiesel production: A review", Algal Research. Vol. 51, pp. 102-109 (2020).
[91]      Roy, U. K., Nielsen, B. V., Milledge, J. J., "Effect of post-harvest conditions on antioxidant enzyme activity in Dunaliella tertiolecta biomass. Biocatal", Algal Research. Vol. 27, pp. 101-115, (2020).
[92]      Kumar, R. R., Rao, P. H., Subramanian, V. V., Sivasubramanian, V., "Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry", Journal of food science and technology. Vol. 51, pp. 322–328, (2014).
[93]      Qv, X. Y., Jiang, J. G., "Toxicity evaluation of two typical surfactants to Dunaliella bardawil, an environmentally tolerant alga", Environmental toxicology and chemistry. Vol. 32, pp. 426–433, (2013).
[94] Chen, H., Jiang, J. G., "Toxic effects of chemical pesticides (trichlorfon and dimehypo) on Dunaliella salina", Chemosphere. Vol. 84, pp. 664–670, (2011).