شبیه‌سازی پدیدۀ رسوب‌گرفتگی در رآکتور پلی‌اتیلن سبک پتروشیمی کردستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی شیمی، دانشگاه کردستان

2 دانشیار مهندسی شیمی، دانشگاه کردستان

چکیده

پلی‌اتیلن سبک بسپاری از خانوادۀ پلی‌اتیلن‌هاست که به‌طور عمده در صنعت پلاستیک کاربرد دارد؛ این بسپارها در فشارها و دماهای بالا با استفاده از واکنش رادیکالی تشکیل می‌شوند. پدیدۀ رسوب‌گرفتگی ‌ناشی از جداسازی فاز ترمودینامیکی بسپار و اتیلن است که این جداسازی فاز در منطقۀ دیوارۀ رآکتور لوله‌ای (نزدیک به جریان خنک‌کننده) رخ می‌دهد. رسوب‌گرفتگی باعث کاهش انتقال حرارت به سیال درون ژاکت رآکتور و موجب کاهش تولید و در موارد بحرانی باعث تجزیۀ خطرناک اتیلن می‌شود. هدف این پژوهش شبیه‌سازی پدیدۀ رسوب و تأثیرهای آن بر روی دما و فشار خروجی رآکتور بر پایۀ مسائل انتقال حرارت است. مدل ریاضی حل‌شده بر اساس معادلات انتقال حرارت شکل‌گرفته و برای محاسبۀ داده‌های تعادل فازی با توجه به فشار و دما از معادلات حالت SRK استفاده‌ شده است. در پایان با بهره‌گیری از شگرد دینامیک سیالات محاسباتی، داده‌های به‌دست‌آمده حل و شبیه‌سازی شد. نتایج به‌دست‌آمده بیانگر نحوۀ تأثیر مشخصات رسوب ایجادشده بر روی عملکرد حرارتی رآکتور است. مدل انجام‌شده در شرایط عملیاتی برای پلی‌اتیلن سبک با درجۀ H 2420 تحت لیسانس شرکت بازل انجام‌ شده است. بر اساس نتایج مدل‌سازی مشخص شد که با افزایش ضخامت رسوب از 1/0 تا 2/1 میلی‌متر، دمای خروجی رآکتور افزایش پیدا می‌کند؛ اما تأثیر چشمگیری بر میزان افت فشار درون رآکتور ندارد. هم‌چنین افزایش 10 درجه‌ای دمای واکنش باعث شد که درصد حجمی فاز دوم (رسوب) از 0.1833 به 0.1818 میلی‌متر کاهش داده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Fouling Phenomenon in Low Density Polyethylene Reactor in Kurdistan Petrochemical Company

نویسندگان [English]

  • S. Karimi 1
  • R. Beigzadeh 2
1 M. Sc. in Chemical Engineering, University of Kurdistan
2 Associate Professor of Chemical Engineering, University of Kurdistan
چکیده [English]

Low-density polyethylene is a subset of polyethylene that is mainly used in the plastics industry. These polymers are formed at high pressures and temperatures using a radical reaction. The fouling phenomenon is the result of the thermodynamic phase separation of polymer and ethylene. This phase separation occurs in the wall area (wall close to the cooling flow) of the tubular reactor, which reduces heat transfer to the reactor jacket, reducing production and in critical cases dangerous decomposition of ethylene. The purpose of this study is to simulate the phenomenon of fouling and its effects on the temperature and pressure of the reactor based on the heat transfer problems. The solved mathematical model is formed based on heat transfer equations to solve the computational fluid dynamics equations which are used to calculate the phase equilibrium data for pressure and temperature: The obtained results show that by increasing the thickness of the fouling, the heat transfer rate decreases. The operating model was used based on thelow-density polyethylene with a grade of 2420H. Based on the model, it was found that with increasing the thickness of fouling from 0.1 to 1.2 mm, the outlet temperature of the reactor increases, but does not have a significant effect on the pressure drop inside the reactor: Moreover,10 °C increase in reaction temperature caused the volume percentage of the second phase (fouling) is reduced from 0.1833 to 0.1818 mm.
 

کلیدواژه‌ها [English]

  • Low Density Polyethylene
  • Fouling
  • Computational Fluid Dynamics
  • Cooling Flow

 

[1]        Kiparissides, C., Verros, G., Macgregor, J. F., "Mathematical modeling, optimization, and quality control of high-pressure ethylene polymerization reactors", Journal of Macromolecular Science, Part C: Polymer Reviews, 33, pp. 437-527,) 1993).
[2]        Buchelli, A., Call, M. L., Brown, A. L., "Modeling fouling effects in LDPE tubular polymerization reactors, 2, Heat transfer, computational fluid dynamics, and phase equilibria", Industrial & Engineering Chemistry Research, 44, pp. 1480-1492, (2005).
[3]        Shojaee, S., Hosseini, S. H., Rafati, A., Ahmadi, G., "Prediction of the effective area in structured packings by computational fluid dynamics", Industrial & Engineering Chemistry Research, 50, pp. 10833-10842, (2011).
[4]        Fourcade, E., Wadley, R., Hoefsloot, H. C., Green, A., Iedema, P. D., "CFD calculation of laminar striation thinning in static mixer reactors", Chemical Engineering Science, 56, pp. 6729-6741, (2001).
[5]        Ehrlich, P., "Fundamentals of the Free-radical Polymerization of Ethylene", Advances in Polymer Science, 7, pp. 336-345, (1971).
[6]        Agrawal, S., Han, C. D., "Analysis of the high pressure polyethylene tubular reactor with axial mixing", AIChE Journal, 21, pp. 449-465, (1975).
[7]        Chen, C. H., Vermeychuk, J. G., Howell, J. A., Ehrlich, P., Computer model for tubular high-pressure polyethylene reactors. AIChE Journal, 22,
pp. 463-471, (1976).
[8]        Saraiva, A., Kontogeorgis, G.M., Harismiadis, V. J., Fredenslund, A., Tassios, D. P., "Application of the van der Waals equation of state to polymers IV. Correlation and prediction of lower critical solution temperatures for polymer solutions", Fluid Phase Equilibria, 115, pp. 73-93, (1996)
[9]        Tsai, K., Fox, R. O., "PDF modeling of turbulent-mixing effects on initiator efficiency in a tubular LDPE reactor", AIChE journal, 42, pp. 2926-2940, (1996).
[10]      Read, N. K., Zhang, S. X., Ray, W. H., "Simulations of a LDPE reactor using computational fluid dynamics", AIChE journal, 43, pp. 104-117, (1997).
[11]      Lacunza, M. H., Ugrin, P. E., Brandolin, A., Capiati, N. J., "Heat transfer coefficient in a high pressure tubular reactor for ethylene polymerization", Polymer Engineering & Science, 38, pp. 992-1013, (1998).
[12]      Zhou, W., Marshall, E., Oshinowo, L., "Modeling LDPE tubular and autoclave reactors", Industrial & Engineering Chemistry Research, 40, pp. 5533-5542, (2001).
[13]      Buchelli, A., Call, M. L., Brown, A. L., "Modeling fouling effects in LDPE tubular polymerization reactors, 3, Computational fluid dynamics Analysis of a reacting", Industrial & Engineering Chemistry Research, 44, pp. 1493-1505, (2005).
[14]      Buchelli, A., Call, M. L., Brown, A. L., "Modeling Fouling Effects in LDPE Tubular Polymerization Reactors, 1, Fouling Thickness Determination", Industrial & Engineering Chemistry Research, 44, pp. 1474-1479, (2005).
[15]      Nagy, I., de Loos, T. W., Krenz, R. A., Heidemann, R. A., "High pressure phase equilibria in the systems linear low density polyethylene+ n-hexane and linear low density polyethylene+ n-hexane+ ethylene, Experimental results and modelling with the Sanchez-Lacombe equation of state", The Journal of Supercritical Fluids, 37, pp. 115-124, (2006).
[16]      Wang, L. S., "Calculation of vapor–liquid equilibria of polymer solutions and gas solubilities in molten polymers based on PSRK equation of state", Fluid Phase Equilibria, 260, pp. 105-112, (2007).
[17]      Kazi, S. N., Duffy, G. G., Chen, X. D., "Fouling and fouling mitigation on different heat exchanging surfaces," In Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, Schladming, Austria, pp. 14-19, (2009).
[18]      Azmi, A., Aziz, N., "Simulation studies of low-density polyethylene production in a tubular reactor", Procedia Engineering, 148, pp.1170-1176, (2016).
[19]      Barbosa, L. A., Dreger, A. A., Santana, R. M. C., Schneider, E. L., Morisso, F. D. P., "Influence of reaction temperature on the generation of gels during EVA production in tubular reactor", Matéria, 23, pp. 367-377, (2018).
[20]      Hohlen, A., Augustin, W., Scholl, S., "Quantification of Polymer Fouling on Heat Transfer Surfaces During Synthesis ", Macromolecular Reaction Engineering, 14, pp. 1-10, (2020).
[21]      Van Erdeghem, P. M., Logist, F., Vallerio, M., Dittrich, C., Van Impe, J. F., "Model based optimisation of tubular reactors for LDPE production", IFAC Proceedings Volumes, 45,
pp. 786-791, (2012).
[22]      He, M., Su, C., Liu, X., Qi, X., Lv, N., "Measurement of isobaric heat capacity of pure water up to supercritical conditions", The Journal of Supercritical Fluids, 100, pp.1-6, (2015).
[23]      Assael, M. J., Bekou, E., Giakoumakis, D., Friend, D. G., Killeen, M. A., Millat, J., Nagashima, A., "Experimental data for the viscosity and thermal conductivity of water and steam", Journal of Physical and Chemical Reference Data, 29, pp. 141-166, (2000).
[24]      Khazraei, P. K. F., Dhib, R., "Modeling of ethylene polymerization with difunctional initiators in tubular reactors", Journal of Applied Polymer Science, 109, pp. 3908-3922, (2008).
[25]      Holman, J. P., "Heat Transfer", Tenth edition, McGraw-Hill Book Company, New York, p. 235, (2009).
[26]      Soave, G., Gamba, S., Pellegrini, L. A., "SRK equation of state: Predicting binary interaction parameters of hydrocarbons and related compounds", Fluid Phase Equilibria, 299, pp. 285-293, (2010).
[27]      Weirong, J. I., "Modeling VLE and GLE of systems involving polymers by using SRK equation of state", Chinese Journal of Chemical Engineering, 15,
pp. 221-227, (2007).
[28]      Rodgers, P. A., "Pressure–volume–temperature relationships for polymeric liquids: A review of equations of state and their characteristic parameters for 56 polymers", Journal of Applied Polymer Science, 48, pp. 1061-1080, (1993).
[29]      Meyer, T., Keurentjes, J. T., "Handbook of polymer reaction engineering", First edition, Wiley-VCH, Michigan, p. 721, (2005).