مروری بر دستگاه‌های بازیافت انرژی در شیرین‌سازی آب دریا به‌روش اسمز معکوس

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار مهندسی شیمی، گروه مهندسی شیمی، واحد داراب، دانشگاه آزاد اسلامی، داراب، ایران

2 استادیار مهندسی شیمی، گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

3 استادیار مهندسی شیمی، گروه شیمی، واحد داراب، دانشگاه آزاد اسلامی، داراب، ایران

4 استادیار مهندسی شیمی، گروه مهندسی پلیمر، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

شیرینسازی آب دریا بهروش اسمز معکوس بهدلیل کارایی بالا در سالهای اخیر طرفداران بسیاری یافته است و قسمت زیادی از آب دریا با این روش تصفیه میشود. در این فرایند، دستگاه‌های بازیافت انرژی نقش مهمی در کاهش مصرف انرژی و هزینه‌های فرایند دارند؛ زیرا از یک سو انرژی مصرفی پمپ‌های فشار بالای تغذیۀ غشای اسمز معکوس زیاد است و از سوی دیگر 40 درصد از آب تغذیه به‌وسیلۀ غشاها تصفیه و 60 درصد آن بهصورت پساب با فشار بالا تخلیه می‌شود که انرژی زیادی را با خود خارج می‌کند. دستگاه بازیافت، انرژی هیدرولیک پساب را به انرژی مکانیکی تبدیل و بهعنوان کمکمحور به پمپ تغذیه منتقل می‌کند یا بهصورت مستقل برای انتقال بخشی از خوراک استفاده می‌کند. هدف از این پژوهش مطالعۀ دستگاه‌های بازیافت انرژی و مقایسۀ آنها با یکدیگر برای انتخاب یک سیستم مناسب بازیافت انرژی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of Energy Recovery Devices in Seawater Desalination by Reverse Osmosis Method

نویسندگان [English]

  • K. Salehi 1
  • N. Esfandiari 2
  • Kh. Shekoohi 3
  • A. H. Haghighi 4
1 Assistant Professor of Chemical Engineering, Department of Chemical Engineering, Darab Branch, Islamic Azad University, Darab, Iran
2 Assistant Professor of Chemical Engineering, Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 Assistant Professor of Chemical Engineering, Department of Chemistry, Darab Branch, Islamic Azad University, Darab, Iran
4 Assistant Professor of Chemical Engineering, Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Desalination process of seawater by reverse osmosis method, has attracted more attention in recent years, due to its high efficiency, and about 62 percent of seawater is treated by this method. In this process energy recovery devices play an important role in reducing energy consumption and process costs, because on the one hand the energy consumption of high pressure pumps for feeding reverse osmosis membrane is high, and on the other hand 40 percent of feed water is treated with membrane and 60 percent is discharged as a high-pressure waste, which releases a lot of energy. The energy recovery device converts this hydraulic energy of the effluent into mechanical energy and transfers it to the feed pump as a shaft aid or uses it independently to transfer a part of the feed. The purpose of this research is to study energy recovery devices and compare them with each other to select a suitable energy recovery system.

کلیدواژه‌ها [English]

  • Reverse Osmosis
  • Desalination
  • Seawater
  • Energy Recovery System

 

[1]        Dawoud, M. A., "Water import and transfer vs desalination in arid regions: GCC countries case study", Desalination and Water Treatment,
28, pp.153–163, (2011).
[2]        Bagheri, A., Esfandiari, N., Honarvar, B., "Improving Performance of Solar Still by External Solar Panels and Cylindrical Parabolic Collector for Seawater Desalination", Journal of Solar Engergy Research, 4, pp.163-170, (2019).
[3]        Bagheri, A., Esfandiari, N., Honarvar, B., Azdarpour, A. "An experimental study on the effects of direct and indirect use of solar energy on solar seawater desalination", Water Supply, 20, pp. 259-268, (2020).
[4]        Bagheri, A., Esfandiari, N., Honarvar, B., Azdarpour, A., "First principles versus artificial neural network modelling of a solar desalination system with experimental validation", Mathematical and Computer Modelling of Dynamical Systems 26, pp. 453-480, (2020).
[5]        Bagheri, A., Esfandiari, N., Honarvar, B., "Experimental investigation of the effect of using the cylindrical parabolic collector, different solar panels and their cooling on seawater desalination in double-slope solar still", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43, pp. 107-119, (2021).
[6]        Bagheri, A., Esfandiari, N., Honarvar, B., "ANN Modeling and experimental study of the effect of various factors on solar desalination", Journal of Water Supply: Research and Technology-Aqua, 70, pp. 41-57, (2021).
[7]        Mansour, T. M., Ismail, T. M., Ramzy, K., Abd El-Salam, M., "Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations", Alexandria Engineering Journal, 59, pp. 3741-3753, (2020)
[8]        Nallakukkala, S., Lal, B., "Seawater and produced water treatment via gas hydrate: Review", Journal of Environmental Chemical Engineering, 9, pp.105053, (2021).
[9]        AWWA, "Water desalting planning guide for water utilities", John Wiley and Sons, New York, 2004.
[10]      Parker, A., "Potable water from sea water", Nature, 149, PP. 184-186, (1942).
[11]      Jeon, J., Park, B., Yoon, Y., Kim, S., "An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination", Desalination and Water Treatment, 57(55), pp. 1-9, (2016).
[12]      Panagopoulos, A., Haralambous K. J., Loizidou, M., "Desalination brine disposal methods and treatment technologies -A review", Science of the Total Environment, 693, p. 133545, (2019).
[13]      Shufei, Z., Libo, X., Zidan, X., "Analysis on the development history and current situation of seawater desalination at home and abroad", Water Treatment Technology, 40, pp. 12–15, (2014).
[14]      Bahoosh, M., Kashi, E., Shokrollahzadeh, S., Rostami, Kh., "Comparison the performance of different reverse osmosis membrane modules by CFD modeling", Iranian Journal of Chemical Engineering, 16, pp. 101-116, (2019).
[15]      Saleem, N., Zaidi, B., "Nanoparticles in reverse osmosis membranes for desalination: A state of the art review", Desalination, 475, pp. 11417, (2020).
[16]      Gaublomme, D., Strubbe, L., Vanoppen, M., Torfs, E., Mortier, S., Cornelissen, E., De Gusseme, B., Verliefde, A., Nopens, I., "A generic reverse osmosis model for full-scale operation", Desalination, 490, pp. 114509, (2020).
[17]      Hadadian, Z., Zahmatkesh, S., Ansari, M., Haghighi, A., Moghimipour, E.,"Mathematical and experimental modeling of reverse osmosis (RO) process", Korean Journal of Chemical Engineering, 38, pp. 366–379 (2021).
[18]      Lee, T., Rahardianto, A., Cohen,Y., "Flexible reverse osmosis (FLERO) desalination", Desalination, 452, pp. 123-13( 2019).
[19]      Nair, M, Kumar, D., "Water desalination and challenges: The Middle East perspective: A Review", Desalinatin and Water Treatment, 51, pp. 10-12, (2012).
[20]      Huang, B., Pu, K., Wu, P., Wu, D., Leng, J. "Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review", Energies, 13, pp. 4150-4169 (2020).
[21]      Yanyue, L., "Research on Optimal Design of Reverse Osmosis Seawater Desalination System", PhD. Thesis, Ocean University of China, Qingdao, China, (2004).
[22]      Koutsou, C. P., Kritikos, E., Karabelas, A. J., Kostoglou, M., "Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes", Desalination, 476, pp. 114213-114222, (2020).
[23]      Alanezi, A. A., Altaee, A., Sharif, A., "The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process", Chemical Engineering Research and Design, 158, pp. 12-23, (2020).
[24]      Liu, C., Rainwater, K., Song, L., "Energy analysis and efficiency assessment of reverse osmosis desalination process", Desalination, 276(1-3), pp. 352-358, (2011).
[25]      Gude, V. G., "Energy consumption and recovery in reverse osmosis", Desalination and Water Treatment, 36, pp.239–260, (2011).
[26]      Tianbao, S., Lu, L., Jianwei, B., Xidong, X., Yulian, Y., Chunyou, P. "Key points of design and equipment selection of reverse osmosis seawater desalination high-pressure system", Water Purification Technology, 38, pp.131–134, (2019).
[27]      Wilf, M.; Bartels, C., "Optimization of seawater RO systems design", Desalination, 173, pp.1–12, (2005).
[28]      Guirguis, M. J., "Energy Recovery Devices in Seawater Reverse Osmosis desalination Plants with Emphasis on Efficiency and Economical Analysis of Isobaric versus Centrifugal Devices", PhD Thesis, University of Sounth Florida, (2011).
[29]      Al-Hawaj, O. M., "The work exchanger for reverse osmosis plants", Desalination, 157, pp. 23-27, (2003).
[30]      MacHarg, J. P. "Retro-fitting existing SWRO systems with a new energy recovery device", Desalination, 153, pp. 253–264, (2002).
[31]      Dundorf, S., MacHarg, J., Seacord T. F., "Optimizing lower energy seawater desalination, the affordable desalination collaboration", in: IDA World congress, Maspalomas, Gran Canaria, Spain, 2007.
[32]      Okamoto, Y., Lienhard, J. H., "How RO membrane permeability and other performance factors affect process cost and energy use: A review", Desalination, 470, pp.48-49, (2019).
[33]      Michas, D., "Design of an Energy Recovery Concept for a Small-scale Renewable-driven Reverse Osmosis Desalination System", Thesis, (2013).
[34]      Schunke, A. J., Alberto, G., Herrera, H., Padhye, L., Berry, T. A., " Energy Recovery in SWRO Desalination: Current Status and New Possibilities", Frontiers in Sustainable Cities, 2, pp, 1-7, (2020).
[35]      Li, S., Duran, K., Delagah, S., Mouawad, J., Jia, X., Sharbatmalek, M., "Energy efficiency of staged reverse osmosis (RO) and closed-circuit reverse osmosis (CCRO) desalination: a model-based comparison", Water Supply, 22(20), (2020).
[36]      Kim, Y., Kang, M. G., Lee, S., Jeon, S. G., Choi, J. S., "Reduction of energy consumption in seawater reverse osmosis desalination pilot plant by using energy recovery devices", Desalination and Water Treatment, 51, pp.766–771, (2013).
[37]      Zhou, J., Wang, Y., Duan, Y., Tian, J., Xu, S., "Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system", Desalination, 416, pp.45-53, (2017).
[38]      Christofides, P. D., Zhu, A., Cohen, Y., "Minimization of energy consumption for a two-pass membrane desalination: Effect of energy recovery, membrane rejection and retentate recycling", Journal of Membrane Science, 339, pp. 126–137, (2009).
[39]      Stover, R. L., "Seawater reverse osmosis with isobaric energy recovery devices", Desalination, 203, pp. 168–175, (2007).
[40]      Schneider, B., "Selection operation and control of a work exchanger energy recovery system based on the Singapore project", Desalination, 184, pp. 197–210, (2005).
[41]      Rodriguez, L. G., Pouyfaucon, A. B., "Future prospects of reducing specific energy consumption in SeaWater Reverse Osmosis (SWRO) desalination plants", Interreg Atlantic Area, pp1-31, (2019).