مروری بر استخراج کلروفیل و کاروتئونید از ریزجلبک‌ها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی سهند

2 استادیار مهندسی شیمی، دانشگاه صنعتی سهند

چکیده

کلروفیل و کاروتئونیدها نه‌تنها به‌عنوان افزودنی در محصولات دارویی و بهداشتی، بلکه به‌عنوان مواد رنگ‌کنندۀ طبیعی که خواص آنتی‌اکسیدانی دارند، استفاده می‌شوند. استخراج این ترکیبات براساس روش‌های تخریب سلولی و حلالیت شیمیایی ترکیبات است. از روش‌های جداسازی این ترکیبات، می‌توان به روش‌های کروماتوگرافی، حلال، مایعات فوق بحرانی، آنزیمی، امواج فراصوت و مایکروویو اشاره کرد. از مهم‌ترین موضوعات مرتبط با استخراج کلروفیل و کاروتئونید از ریزجلبک‌ها در محیط کشت، احساس نیاز به یک فرایند استخراج کارآمد، مقرون به‌صرفه و با بازده بالاست. بیشترین محدودیت در پردازش زیستی رنگدانه‌ها مربوط به هزینه‌های نصب تجهیزات و بهره‌برداری از آن‌هاست. بنابراین، هدف از این تحقیق بررسی روش‌های اصلی در استخراج کلروفیل وکاروتئونید از ریزجلبک‌ها با در نظر گرفتن برتری‌ها و کاستی‌های هرکدام از روش‌هاست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Extraction of Chlorophyll and Carotenoids from Microalgae

نویسندگان [English]

  • L. Nedaei 1
  • H. Shokrkar 2
1 B. Sc. Student of Chemical Engineering, Sahand University of Technology
2 Assistant Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

Chlorophyll and carotenoids are essential compounds in many everyday products. These substances are used not only as an additive in pharmaceutical and health products but also as a natural food coloring. In addition, they have antioxidant and anti-mutagenic properties. Extraction of these compounds is based on cell degradation methods and the chemical solubility of the compounds. Methods of separation of these compounds include chromatographic, solvent, supercritical, enzymatic, ultrasound, and microwave methods. One of the most important issues related to the extraction of chlorophyll and carotenoids from microalgae in the culture medium is the need for an efficient, cost-effective, and high-yield extraction process. The greatest limitation in the biological processing of pigments is related to the installation of equipment and operation. Therefore, the purpose of this study is to investigate the main methods for the extraction of chlorophyll and carotenoids from microalgae by considering the advantages and disadvantages of each method.

کلیدواژه‌ها [English]

  • Extraction
  • Microalgae
  • Chlorophyll
  • Carotenoid
[1]        Zamani, M., Shokrkar, H., Ebrahimi, S., "Investigation of protein extraction from microalgae using different pretreatment methods", Iranian Chemical Engineering Journal, Vol. 19, No. 113, pp.18-27, In Persian, (2021).
[2]        Shokrkar, H., Ebrahimi, S., Zamani, M., "Experimental study and neural network modeling of enzymatic hydrolysis of microalgal biomass for bioethanol production", Iranian Journal of Chemistry & Chemical Engineering, Vol. 36, No. 2, pp.181-191, In Persian, (2017).
[3]        Costa, J. A. V., Freitas, B. C. B., Moraes, L., Zaparoli, M., orais, M. G., "Progress in the physicochemical treatment of microalgae biomass for value-added product recovery", Bioresource technology. Vol. 301, pp. 122-127, (2020).
[4]        Mehta, P., Singh, D., Saxena, R., Rani, R., Gupta, R. P., Puri, S. K., Mathur, A. S., "High-Value Coproducts from Algae-An Innovational Way to Deal with Advance Algal Industry", Waste to wealth. Springer, Singapore. pp. 343-363, (2018).
[5]        Vassilev, S. V., and Vassileva, C. G., "Composition, properties and challenges of algae biomass for biofuel application: An overview", Fuel. Vol. 181, pp. 1-33, (2016).
[6]        Panis, G., and Carreon, J. R., "Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line", Algal Research. Vol. 18, pp. 175-190, (2016).
[7]        Lautenbacher, S., Roscher, S., Strian, F., "Inhibitory effects do not depend on the subjective experience of pain during heterotopic noxious conditioning stimulation (HNCS): a contribution to the psychophysics of pain inhibition", European Journal of Pain. Vol. 6, No. 5, pp. 365-374, (2002).
[8]        Jackson, B. A., Bahri, P. A., Moheimani, N. R., "Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii", Renewable and Sustainable Energy Reviews. Vol. 79, pp. 1229-1240, (2017).
[9]        Martínez, J. M., Gojkovic, Z., Ferro, L., Maza, M., Álvarez, I., Raso, J., Funk, C., "Use of pulsed electric field permeabilization to extract astaxanthin from the Nordic microalga Haematococcus pluvialis", Bioresource Technology. Vol. 289, p. 121694, (2019).
[10]      Khoo, K. S., Chew, K. W., Ooi, C. W., Ong, H. C., Ling, T. C., Show, P. L., "Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system", Bioresource Technology. Vol. 290, p. 121794, (2019).
[11]      Pagels, F., Pereira, R. N., Vicente, A. A., Guedes, A., "Extraction of Pigments from Microalgae and Cyanobacteria-A Review on Current Methodologies", Applied Sciences. Vol. 11, No. 11, pp. 5187, (2021).
[12]      Li, S., Ji, L., Shi, Q., Wu, H., Fan, J., "Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp", Bioresource technology. Vol. 292, p. 122048, (2019).
[13]      Fernández-Sevilla, J. M., Fernández, F. A., Grima, E. M., "Biotechnological production of lutein and its applications", Applied Microbiology and Biotechnology. Vol. 86, No. 1, pp. 27-40, (2010).
[14]      Mannozzi, C., Fauster, T., Haas, K., Tylewicz, U., Romani, S., Dalla Rosa, M., Jaeger, H., "Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH)", Innovative Food Science & Emerging Technologies. Vol. 48, pp. 245-253, (2018).
[15]      Guedes, A. C., Amaro, H. M., Malcata, F. X., "Microalgae as sources of carotenoids", Marine drugs. Vol. 9, No. 4, pp. 625-644, (2011).
[16]      Mata, T. M., Martins, A. A., Caetano, N. S., "Microalgae for biodiesel production and other applications: A review", Renewable and Sustainable Energy Reviews. Vol. 14, No. 1, pp. 217-232, (2010).
[17]      Zarnowski, R., Suzuki, Y., "Expedient Soxhlet extraction of resorcinolic lipids from wheat grains", Journal of Food Composition and Analysis. Vol. 17, No. 5, pp. 649-663, (2004).
[18]      Dominguez, H., "Functional ingredients from algae for foods and nutraceuticals", Elsevier Science. Vol. 3, No. 1, pp. 123-132, (2013).
[19]      Jaswir, I., "Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines", African journal of biotechnology. Vol. 10, No. 81, pp. 18855-18862, (2011).
[20]      Mise, T., Ueda, M., Yasumoto, T., "Production of fucoxanthin-rich powder from Cladosiphon okamuranus", Aadvances Journal Food Sciences. Technol. Vol. 3, No. 1, pp. 73-76, (2011).
[21]      Sabeti, S. G., Salehi, A. E., Bolourian, Sh., "Optimization of carotenoid pigments extraction from persimmon fruit ( Diospyros kakilI )", Iranian journal of Food Science and Technology  Vol. 14, No. 68, pp. 234-242, (2017).
[22]      Macıas-Sánchez, M. D., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L. M., Montero, O., "Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp", The Journal of Supercritical Fluids. Vol. 39, pp. 323-329, (2007).
[23]      Warkoyo, W., Saati, E., "The solvent effectiveness on extraction process of seaweed pigment", Makara Journal of Technology. Vol. 15, No. 1, pp. 5-8, (2011).
[24]      Raguraman, V., MubarakAli, D., Narendrakumar, G., Thirugnanasambandam, R., Kirubagaran, R., and Thajuddin, N., "Unraveling rapid extraction of fucoxanthin from Padina tetrastromatica: Purification, characterization and biomedical application", Process Biochemistry. Vol. 73, pp. 211-219, (2018).
[25]      Simon, D., and Helliwell, S., "Extraction and quantification of chlorophyll a from freshwater green algae", Water research. Vol. 32, pp. 2220-2223, (1998).
[26]      Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C., "Phytoplankton pigments in oceanography: guidelines to modern methods", Unesco Pub, Paris, Farnce. Vol. 10, No. 2, pp. 578-579, (2005).
[27]      Aghajanpoor SorKohi, N., Babakhani Lashkan, A., Tabarsa, M., "Optimization of brown alga pigment extraction conditions Sargassum angustifolium Persian Gulf using the response level method (RSM)", Fisheries, Iranian Journal of Natural Resources. Vol. 71, No. 4, pp. 390-401, In Persian, (2019).
[28]      Borowitzka, M. A, "Commercial production of microalgae: ponds, tanks, tubes and fermenters", Journal of biotechnology. Vol. 70, No. 1-3, pp. 313-321, (1999).
[29]      Sartory, D. P., Grobbelaar, J. U., "Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis", Hydrobiologia. Vol. 114, No. 3, pp. 177-187, (1984).
[30]      Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C. (Eds.), "Phytoplankton Pigments in Oceanography", Guidelines to Modern Methods, UNESCO, Paris, Farnce. Vol. 10, No. 2, pp.523-525, (1997).
[31]      Macías-Sánchez, M. D., Mantell, C., Rodriguez, M. D. L., De La Ossa, E. M., Lubián, L. M., Montero, O., "Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina", Talanta. Vol. 77, No. 3, pp. 948-952, (2009).
[32]      Mantoura, R. F. C., Llewellyn, C. A., "The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography", Analytica Chimica Acta. Vol. 151, pp. 297-314, (1983).
[33]      Sartory, D. P., "The determination of algal chlorophyllous pigments by high performance liquid chromatography and spectrophotometry", Water Research. Vol. 19, No. 5, pp. 605-610, (1985).
[34]      Abaychi, J. K., and Riley, J. P., "The determination of phytoplankton pigments by high-performance liquid chromatography", Analytica Chimica Acta. Vol.107, pp. 1-11, (1979).
[35]      Jeffrey, S. W., "Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae", Biochimica et Biophysica Acta (BBA)-Bioenergetics . Vol. 162, No. 2, pp. 271-285, (1968).
[36]      Madgwick, J. C., "Chromatographic determination of chlorophylls in algal cultures and phytoplankton", Deep Sea Research and Oceanographic Abstracts. Elsevier. Vol. 13, p. 459, (1966).
[37]      Riley, J. P., Wilson, T. R. S., "The use of thin-layer chromatography for the separation and identification of phytoplankton pigments", Journal of the Marine Biological Association of the United Kingdom. Vol. 45, No. 3, pp. 583-591, (1965).
[38]      Co, D. Y. L., Schanderl, S. H., "Separation of chlorophylls and related plant pigments by two-dimensional thin-layer chromatography", Journal of Chromatography A. Vol. 26, No. 2, pp. 442-448, (1967).
[39]      Wright, S. W., Shearer, J. D., "Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton", Journal of Chromatography A. Vol. 294, pp. 281-295, (1984).
[40]      Shoaf, W. T., "Rapid method for the separation of chlorophylls a and b by high-pressure liquid chromatography", Journal of Chromatography A. Vol. 152, No. 1, pp. 247-249, (1978).
[41]      Eghbali Babadi, F., "Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether", Food and bioproducts processing. Vol. 123, pp. 296-303, (2020).
[42]      Garbayo, I., Cuaresma, M., Vílchez, C., Vega, J. M., "Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila", Process Biochemistry. Vol. 43, pp. 1158-1161, (2008).
[43]      Lai, Y. S., Zhou, Y., Eustance, E., Straka, L., Wang, Z., Rittmann, B. E., "Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803", Algal Research. Vol. 34, pp. 250-255, (2018).
[44]      Rastegari, A., Darki, B., "Biophysical effect of anionic surfactant on growth dynamics and computational prediction of extracellular
signal-regulated kinases in Dunaliella viridis Microalgae", Iranian Journal of Plant Biology.Vol. 20, No. 4, pp. 1-20, In Persian, (2018).
[45]      Jiménez, C., Cossío, B. R., Rivard, C. J., Berl, T., Capasso, J. M., "Cell division in the unicellular microalga Dunaliella viridis depends on phosphorylation of extracellular signal-regulated kinases (ERKs)", Journal of experimental botany. Vol. 58, pp. 1001-1011, (2007).
[46]      Posudin, Y. I., Massjuk, N. P., Lilitskaya, G. G., "Photomovement of Dunaliella Teod", Ukraine, Naukova Dumka. Vol. 20, pp. 891-892, (2010).
[47]      Abrahamsson, V., Cunico, L. P., Andersson, N., Nilsson, B., Turner, C., "Multicomponent inverse modeling of supercritical fluid extraction of carotenoids, chlorophyll A, ergosterol and lipids from microalgae", The Journal of Supercritical Fluids. Vol. 139, pp. 53-61, (2018).
[48]      Macías‐Sánchez, M. D., Mantell Serrano, C., Rodríguez Rodríguez, M., Martínez de la Ossa, E., Lubián, L. M., and Montero, O., "Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent", Journal of separation science. Vol. 31, pp. 1352-1362, (2008).
[49]      Gallego, R., Bueno, M., Herrero, M., "Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update", TrAC Trends in Analytical Chemistry. Vol. 116, pp. 198-213, (2019).
[50]      Juin, C., Chérouvrier, J. R., Thiéry, V., Gagez, A. L., Bérard, J. B., Joguet, N., Kaas, R., Cadoret, J. P., Picot, L., "Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum". Applied biochemistry and biotechnology. Vol. 175, No. 1, pp. 1-15, (2015).
[51]      Liau, B. C., Shen, C. T., Liang, F. P., Hong, S. E., Hsu, S. L., Jong, T. T., Chang, C. M. J., "Supercritical fluid extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity", Journal of Supercritical Fluids. Vol. 55, pp. 169-175, (2010).
[52]      Razi, N., Shamsaie, M., Hosseini Shekarabi, S. P., "A comparative study of different drying methods on some proximate composition and pigments of marine microalgae Isochrysis galbana Aquaculture Sciences", Journal of Aquaculture Sciences .Vol. 7, No. 12, pp. 12-20, In Persian, (2020).
[53]      Guedes, A. C., Gião, M. S., Matias, A. A., Nunes, A. V., Pintado, M. E., Duarte, C. M., Malcata, F. X., "Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing", Journal of Food Engineering. Vol. 116, pp. 478-482, (2013).
[54]      Natarajan, R., Ang, W. M., Chen, X., Voigtmann, M., Lau, R., "Lipid releasing characteristics of microalgae species through continuous ultrasonication", Bioresour Technol. Vol. 158, pp. 7-11, (2014).
[55]      Stévant, P., "Effects of drying on the nutrient content and physico-chemical and sensory characteristics of the edible kelp Saccharina latissima", Journal of Applied Phycology. Vol. 30, No. 40, pp. 2587-2599, (2018).
[56]      Amaro, H. M., Guedes, A. C., Preto, M. A., Sousa-Pinto, I., Malcata, F. X., "Gloeothece sp. as a Nutraceutical Source — An Improved Method of Extraction of Carotenoids and Fatty Acids", Marine drugs. Vol. 16, No. 9, p. 327, (2018).
[57]      Kumar, S. J., Kumar, G. V., Dash, A., Scholz, P., Banerjee, R., "Sustainable green solvents and techniques for lipid extraction from microalgae: A review", Algal Research. Vol. 21, pp. 138-147, (2017).
[58]      Sierra, L. S., Dixon, C. K., Wilken, L. R., "Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction", Algal Research. Vol. 25, pp. 149-159, (2017).
[59]      Gong, M., Bassi, A., "Carotenoids from microalgae: A review of recent developments", Biotechnology advances. Vol. 34, No. 8, pp. 1396-1412, (2016).
[60]      Vernès, L., Li, Y., Chemat, F., Abert-Vian, M., "Biorefinery Concept as a Key for Sustainable Future to Green Chemistry —The Case of Microalgae. In Plant Based “Green Chemistry 2.0”, Springer Singapore. pp. 15-50, (2019).
[61]      Zuorro, A., Maffei, G., Lavecchia, R., "Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae", Journal of the Taiwan Institute of Chemical Engineers. Vol. 67, pp. 106-114, (2016).
[62]      Tavanandi, H. A., Vanjari, P., Raghavarao, K. S. M. S., "Synergistic method for extraction of high purity Allophycocyanin from dry biomass of Arthrospira platensis and utilization of spent biomass for recovery of carotenoids", Separation and Purification Technology. Vol. 225, pp. 97-111, (2019).
[63]      Lee, S. Y., Cho, J. M., Chang, Y. K., Oh, Y. K., "Cell disruption and lipid extraction for microalgal biorefineries: A review", Bioresource Technology. Vol.244, pp. 1317-1328, (2017).
[64]      Dey, S., Rathod, V. K., "Ultrasound assisted extraction of β-carotene from Spirulina platensis", Ultrasonics Sonochemistry. Vol. 20, No. 1, pp. 271-276, (2013).
[65]      Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., Picot, L., "Study on the microalgal pigments extraction process: Performance of microwave assisted extraction", Process Biochemistry. Vol. 46, pp. 59-67, (2011)
[66]      Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., Wu, H. F., "Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis", Marine drugs. Vol. 11, No. 5, pp. 1644-1655, (2013).
[67]      Oliveira, E. G. D., Rosa, G. S. D., Moraes, M. A. D., Pinto, L. A. D. A., "Phycocyanin content of Spirulina Platensis dried in spouted bed and thin layer", Journal of Food Process Engineering. Vol. 31, pp. 34-50, (2008).
[68]      Martelli, G., Folli, C., Visai, L., Daglia, M., Ferrari, D., "Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications", Process Biochemistry. Vol. 49, pp. 154–159, (2014).
[69]      Pour Hosseini, S. R., Tavakoli, O., Sarrafzadeh, M. H., "Experimental Optimization of SC-CO2 Extraction of Carotenoids from Dunaliella salina", The Journal of Supercritical Fluids. Vol. 121, pp. 89-95, (2016).
[70]      Lin, L. P., "Microstructure of spray-dried and freeze-dried microalgal powders", Food Structure. Vol. 4, No. 2, pp. 341-348, (1985).
[71]      Ling, A. L. M., Yasir, S., Matanjun, P., Bakar, M. F. A., "Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii", Journal of Applied Phycology. Vol. 27, No. 4, pp. 1717-1723, (2015).
[72]      Krishnan, R. Y., Rajan, K. S., "Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics", Separation and Purification Technology. Vol. 157, pp. 169-178, (2016).
[73]      Bernaerts, T. M., Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T., Van Loey, A. M., "Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA", Journal of Functional Foods. Vol. 65, pp. 103770, (2020).
[74]      Cha, K. H., Lee, H. J., Koo, S. Y., Song, D. G., Lee, D. U., Pan, C. H., "Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris", Journal of agricultural and food chemistry. Vol. 58, No. 2, pp. 793-797, (2010).
[75]      Rodríguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., García-Blairsy, R. G., Señoráns, F. J., Ibáñez, E., "Pressurized Fluid Extraction of Bioactive Compounds from Phormidium Species", Journal of Agricultural and Food Chemistry. Vol. 56, No. 10, pp. 3517-3523, (2008).