فروشویی زیستی فلزات اساسی از زباله‌های صفحات مدارچاپی رایانه با استفاده از قارچ پنیسیلیوم سیمپلیسیسیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر دورۀ پسادکتری مهندسی بیوتکنولوژی، دانشگاه صنعتی شریف

2 کارشناسی ارشد مهندسی بیوتکنولوژی، دانشگاه صنعتی شریف

3 استاد مهندسی بیوتکنولوژی، دانشگاه صنعتی شریف

چکیده

زباله­های الکتریکی و الکترونیکی دو تا سه برابر سریعتر از سایر زباله­های جامد شهری در حال تولیدشدن هستند. بازیابی فلزات این زباله­ها علاوه بر کاهش مواد خطرناک، نیاز جهانی برای تولید فلزات جدید را تأمین می­کند. در این مقاله بازیافت زیستی فلزات مس، آلومینیوم، نیکل، روی، منگنز، منیزیم، باریم،کروم و آهن از صفحات مدارچاپی رایانه با استفاده از فروشویی زیستی تک‌مرحله­ای مطالعه شده است. صفحات مدارچاپی رایانه تا اندازۀ ذرات 75-149 میکرون پودر شدند. قارچ پنیسیلیوم سیمپلیسیسیوم1 به 1 درصد (وزنی – حجمی) از صفحات مدارچاپی رایانه خو داده شد. بعد از خوسازی و انجام فرایند فروشویی زیستی هر یک از فلزات مس، آلومینیوم، نیکل، روی، منگنز، منیزیم، باریم،کروم و آهن به­ترتیب برابر با 94%، 8/99%، 100%، 100%، 61%، 81%، 46%، 26% و 100% استخراج شدند؛ درنتیجه فرایند فروشویی زیستی با استفاده از قارچ پنیسیلیوم سیمپلیسیسیوم روشی مؤثر در حذف فلزات سنگین از زباله­های الکترونیکی شناخته شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bioleaching of Basic Metals from Computer Printed Circuit Boards Waste Using Penicillium Simplicissimum

نویسندگان [English]

  • M. Arshadi 1
  • A. Esmaeili 2
  • S. Yaghmaei 3
1 The Researcher of Postdoctoral, Sharif University of Technology
2 M. Sc. in Biotechnology Engineering, Sharif University of Technology
3 Professor of Biotechnology Engineering, Sharif University of Technology
چکیده [English]

Background and Objectives: By improving technology at recent years, some new environmental problems created. Electronic waste is one of the important problems. Recycling of e-wastes is limited. Just some countries by using traditional methods are recycling e-wastes. Pyrometallurgy and hydrometallurgy are two recycling methods for e-waste. These traditional methods are expensive and non-ecofriendly. Bioleaching is a new and efficient method for e-waste recovery which by interacting microorganisms helps to metal recovery. In this article biorecovery of Cu, Al, Ni, Zn, Mn, Mg, Ba, Cr, and Fe from printed circuit boards using one-step bioleaching was studied. To this purpose computer printed circuit boards were fined and the particle size was in the range of 75-149 micron. Penicillium simplicissimum was adapted to 1% (w/v) of computer printed circuit boards. After adaptation and bioleaching process Cu, Al, Ni, Zn, Mn, Mg, Ba, Cr, and Fe were bioleached about 94%, 99/8%, 100%, 100%, 61%, 81%, 46%, 26%, and 100% respectively. This paper proved the great potential of the bio-hydrometallurgical route to recover base metals from electronic wastes using fungi.

کلیدواژه‌ها [English]

  • Bioleaching
  • One-Step
  • Computer Printed Circuit Boards
  • Penicillium Simplicissimum
  • Basic Metals
[1]        Kumar, M., Holuszko, M., "E-waste: An overview on generation, collection, legislation and recycling practices", Resources, Conservation, and Recycling, 122: pp. 32-42, (2017).
[2]        Blade, C. P., Kuehr, R., Blumenthal, K., Fondeur Gill, S., Kern, M., Micheli, P., Magpantay, E., Jaco, H., "E-waste statistics - Guidelines on classification, reporting and indicators", Bonn: United Nations University; (2015).
[3]        Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., Rosa, P., "Recycling of WEEEs: an economic assessment of present and future e-waste streams", Renewable and Sustainable Energy Reviews, 51: pp. 263-72, (2015).
[4]        Singh, N., Li, J., Zeng, X., "Global responses for recycling waste CRTs in e-waste", Waste Management, 57: pp. 187-97, (2016).
[5]        Namias, J., "The future of electronic waste recycling in the United States: Obstacles and domestic solutions", New York: Columbia University, (2013).
[6]        Heacock, M., Kelly, C. B., Asante, K. A., Birnbaum, L. S., Bergman, A. L., Brune, M. N., Buka, I., Carpenter, D. O., Chen, A., Huo, X., Kamel, M., Landrigan, P. J., Magalini, F., Diaz-Barriga, F., Neira, M., Omar, M., Pascale, A., Ruchirawat, M., Sly, L., Sly, P. D., Berg, M. V. D., Suk, W. A., "E-Waste and harm to vulnerable populations: A growing global problem", Environmental Health Perspectives, 124 (5): pp. 550-55, (2015).
[7]        Ely, C., "The life expectancy of electronics", Arlington: Consumer Technology Association, (2014). [Cited 2017 Nov 30]. Available from: https://www.cta.tech/News/Blog/Articles/2014/September/The-Life-Expectancy-of-Electronics.aspx
[8]        Holgersson, S., Steenari, B. M., Bjorkman, M., Cullbrand, K., "Analysis of the metal content of small-size waste electric and electronic equipment (WEEE) printed circuit 294 boards—part 1: Internet routers, mobile phones and smartphones", Resources, Conservation, and Recycling, 295 (133): pp.300-308, (2018).
[9]        Arshadi, M., Esmaeili, A., Yaghmaei, S., "Investigating critical parameters for bioremoval of heavy metals from computer printed circuit boards using the fungus Aspergillus niger", Hydrometallurgy, 197: pp. 105464, (2020).
[10]      Duan, H., Hou, K., Li, J., Zhu, X., "Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environment concerns", Environmental Management, 92: pp. 392-99, (2011).
[11]      Golev, A., Schmeda-Lopez, D. R., Smart, S. K., Corder, G. D., McFarland, E. W., "Where next on e-waste in Australia?", Waste Management, 58: pp. 348-58, (2016).
[12]      Arshadi, M., Esmaeili, A., Yaghmaei, S., "Evaluating the optimal digestion method and value distribution of precious metals from different waste printed circuit boards", Journal of Material Cycle and Waste Management, 22: pp. 1690-1698, (2020).
[13]      Arshadi, M., Yghamei, S., Mousavi, S. M., "Study of plastics elimination in bioleaching of electronic waste using Acidithiobacillus ferrooxidans", International Journal of Environmental Science and Technology, 16(11): pp. 7113-7126, (2018).
[14]      Tanskanen, P., "Management and recycling of electronic waste", Acta Materialia, 61 (3): pp. 1001-1011 (2013).
[15]      Reuter, M., Hudson, C., Van Schaik, A., Heiskanen, K., Meskers. C., Hagelüken, C., "Metal recycling: Opportunities, limits, infrastructure", A Report of the Working Group on the Global Metal Flows to the International Resource Panel: United Nations Environment Programme, (2013).
[16]      Kumar, R., Shah, D., "Review: Current status of recycling of waste printed circuit boards in India", Journal of Environmental Protection, 5: pp. 9-16, (2014).
[17]      Wang, X., Gaustad, G., "Prioritizing material recovery for end-of-life printed circuit boards", Waste Management, 32: pp. 1903-1913, (2012).
[18]      Pant, D., Joshi, D., Upreti, M. K., Kotnala, R. K., "Chemical and biological extraction of metals present in E waste: a hybrid technology", Waste Management, 32 (5): pp. 979-990, (2012).
[19]      Tuncuk, A., Stazi, V., Akcil, A., Yazici, E., Deveci, H., "Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling", Minerals Engineering, 25(1): pp. 28-37, (2012).
[20]      Arshadi, M., Pourhossein, F., Mousavi, S. M., Yaghmaei, S., "Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor", Separation and Purification Technology, 271: p. 118701, (2021).
[21]      Erust, C., Akcil, A., Gahan, C., Deveci, H., "Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery", Journal of Chemical Technology and Biotechnology, 88 (12): pp. 2115-2132, (2013).
[22]      Arab, B., Hassanpour, F., Arshadi, M., Yaghmaei, S., Hamedi, J., "Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste", Journal of Environmental Management, 261: pp. 110124 (2020).
[23]      Li, S., Zhong, H., Hu, Y., Zhao, J., He, Z., Gu, G., "Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles", Bioresource Technology, 153: pp. 300-306, (2014).
[24]      Qu, Y., Lian, B., "Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10", Bioresource Technology, 136: pp. 16-23, (2013).
[25]      Arshadi, M., Mousavi, S. M., "Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium", Bioresource Technology, 175: pp. 315-324, (2015).
[26]      Chi, T., Lee, J., Pandey, B., Yoo, K., Jeong, J., "Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium", Minerals Engineering, 24: pp. 1219-1222, (2011).
[27]      Arshadi, M., Mousavi, S. M., "Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans", Separation and Purification Technology, 147: pp. 207-219 (2015).
[28]      Karwowska, E., Andrzejewska-Morzuch, D., Lebkowska, M., Tabernacka, A., Wojtkowska, M., Telepko, A., Konarzawska, A., "Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria", Journal of Hazardous Materials, 264: pp. 203-210, (2014).
[29]      Saidan, M., Brown, B., Valix, M., "Leaching of electronic waste using biometabolised acids", Chinese Journal of Chemical Engineering, 20: pp. 530-534, (2012).
[30]      Kim, M. J., Seo, J. Y., Choi, Y. S., Kim, G. H., "Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species", Waste Management, 51: pp. 168-173, (2016).
[31]      Amiri, F., Yaghmaei, S., Mousavi, S. M., Sheibani, S., "Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger", Hydrometallurgy, 109: pp. 65-71, (2011).
[32]      Biswas, S., Bhattacharjee, K., "Fungal assisted bioleaching process optimization and kinetics: Scenario for Ni and Co recovery from a lateritic chromite overburden", Separation and Purification Technology, 135: pp. 100-109, (2014).
[33]      Amiri, F., Yaghmaei, S., Mousavi, S. M., "Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum", Bioresource Technology, 102: pp. 1567-1573, (2011).
[34]      Rasoulnia, P., Mousavi S. M., "V and Ni recovery from a vanadium-rich power plant residual ash using acid producing fungi Aspergillus niger and Penicillium simplicissimum", The Royal Society of Chemistry, 6: pp. 9139-9151, (2016).
[35]      Rasoulnia, P., Mousavi, S. M., Rastegar, S., Azargoshasb, H., "Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods", Waste Management, 52: pp. 309-317, (2016).
[36]      Arshadi, M., Nili, S., Yaghmaei, S., "Ni and Cu recovery by bioleaching from the printed circuit boards of mobile phones in non-conventional medium", Journal of Environmental Management, 250: pp. 109502, (2019).
[37]      Bahaloo-Horeh, N., Mousavi, S. M., Baniasadi, M., "Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries", Journal of Cleaner Production, 197: pp. 1546-1557, (2018).
[38]      Gadd, G. M., "Fungal production of citric and oxalic Acid: Importance in metal speciation, physiology and biogeochemical processes", Poole, R. K. (Ed.), Advances in Microbial Physiology. Academic Press, pp. 47-92, (1999).