بررسی حذف تتراسایکلین از پساب با استفاده از فناوری هیبریدی پلاسمای فیلم ریزان– زئولیت همنهشتی با نسبت Na2O/SiO2 متفاوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، دانشگاه صنعتی سهند

2 دانشیار مهندسی شیمی، دانشگاه صنعتی سهند

چکیده

در این تحقیق از راکتور هیبریدی پلاسمای فیلم ریزان نوع تخلیۀ مانع دیالکتریک، به‌همراه زئولیت همنهشتی برای حذف آلایندۀ دارویی تتراسایکلین از پسابها استفاده شده است. سه نوع زئولیت
بر اساس نسبت دی
اکسید سدیم به دیاکسید سیلیکات 1، 2 و 3 با روش هیدروترمال، همنهشت شده است. تجزیه‌های طیفسنجی مادون قرمز (FT-IR)، پراش پرتو ایکس (XRD) میکروسکوپ الکترونی (SEM)، تجزیۀ‌ اندازهگیری سطح ویژه و طیف‌سنجی پراش انرژی پرتو ایکس (EDX) بر روی این زئولیتهای همنهشتی انجام گرفته است. میزان حذف تتراسایکیلین از پساب در زمان
60 دقیقه در راکتور هیبریدی طراحی شده، برای زئولیت همنهشتی با نسبت اکسید دی سدیم به دی
اکسید سیلیکات 1، حدود 81 درصد بوده است. مشخص شد که این میزان حذف آلاینده، 55 درصد بیشتر از سامانۀ پلاسمای بدون زئولیت است. میزان درصد حذف COD بر اساس تست‌های انجام‌شده حدود 71 درصد بوده است. بر اساس نتایج مربوط به آزمایشهای اثر گونههای فعال در حذف تتراسایکلین اثر رادیکال هیدروکسیل از رادیکال سوپر اکسید 12 درصد بیشتر بوده است. سازوکار پیشنهادی برای انجام واکنش اکسایش پیشرفته در حذف تتراسایکلین بحث و بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation about Tetracycline Removal from Aqueaus Solution by Hybrid Technology Plasma Water Falling Film-Synthesized Zeolite with Different Na2O/SiO2 Ratio

نویسندگان [English]

  • L. Feyzi 1
  • N. Rahemi 2
  • S. Allahyari 2
1 Ph. D. Student of Chemical Engineering, Sahand University of Technology
2 Associate Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

In this research, a hybrid water falling film plasma reactor dielectric barrier discharge with synthesized zeolite has been used to remove the tetracycline from aqueaus solution. Three types of zeolites have been synthesized by the hydrothermal method based on the ratio of sodium dioxide to silicate dioxide 1, 2 and 3. Infrared spectroscopy (FT-IR),
X-ray diffraction (XRD), electron microscopy (SEM), specific surface area, X-ray energy diffraction (EDX), and dot-mapping have been performed on these synthesized zeolites. The tetracycline removal efficiency was about 81% at 60 min in a hybrid reactor designed for synthesized zeolite with a ratio of sodium oxide to silica 1. It was found that this removal percentage is 55% higher than the only plasma system. The percentage of COD removal in hybrid system was about 71% based on the tests performed. Based on experiments related to the effect of active species in the tetracycline removal as a radical trapping experiment, the hydroxyl radical was 12% effective than the superoxide radical. The proposed mechanism is discussed for performing
an advanced oxidation reaction to remove tetracycline.

کلیدواژه‌ها [English]

  • Plasma
  • Falling Film
  • Zeolites
  • Tetracycline
[1]        Costa, L. R. D. C., L. A. Féris., "Use of functinalized adsorbents for tetracycline removal in wastewater: adsorption mechanism and comparison with activated carbon", Journal of Environmental Science and Health, Vol. 55, pp. 1604-1614, (2020).
[2]        Gong, S., Sun, Y., Zheng, K., Jiang, G., Li, L., Feng, J., "Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/activated carbon fibers: Mechanism and degradation pathways", Separation and Purification Technology, Vol. 250, pp. 117-264, (2020).
[3]        Shang, K., Wang, N., Li, W., Jiang, N., Lu, N., Li, J., Wu, Y., "Generation Characteristics of Long-Lived Active Species in a Water Falling Film DBD Reactor", Plasma Chemistry and Plasma Processing, Vol. 231, pp. 1-15, (2021).
[4]        Ren, J., Li, J., Jiang, N., Shang, K., Lu, N., Wu, Y., "Degradation of trans-ferulic acid in aqueous solution by a water falling film DBD reactor: Degradation performance, response surface methodology, reactive species analysis and toxicity evaluation", Separation and Purification Technology, Vol. 235, pp. 116-226, (2020).
[5]        Ghezzar, M. R., Ognier, S., Cavadias, S., Abdelmalek, F., Addou, A., "DBDplate-TiO2 treatment of Yellow Tartrazine azo dye solution in falling film", Separation and Purification Technology, Vol, 104, pp. 250-255, (2013).
[6]        Hoseini, S., Rahemi, N., Allahyari, S., Tasbihi, M. "Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries", Journal of Cleaner Production, Vol. 232, pp. 1134-1147, (2019).
[7]        Zhao, J., Yin, Y., Li, Y., Chen, W., Liu, B., "Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates", Chemical Engineering Journal, Vol. 284, pp. 405-411, (2016).
[8]        Hoseini, S., Rahemi, N., Allahyari, S., Tasbihi, M., "Effect of hydrometallurgical process parameters on the Mn2O3 nano catalysts derived from spent batteries used in the plasma catalytic oxidation of BTX", Advanced Powder Technology, Vol. 31, pp. 4187-4196, (2020).
[9]        Xu, L., Zhao, L., Mao, Y., Zhou, Z., Wu, D., "Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@ zeolite: Critical role of Cu (I) and superoxide radical", Separation and Purification Technology, Vol. 253,
pp. 117-150, (2020).
[10]      Fan, J., Wu, H., Liu, R., Meng, L., Sun, Y., "Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts", Environmental Science and Pollution Research, pp. 1-27, (2020).
[11]      He, D., Sun, Y., Li, S., Feng, J., "Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst", Journal of Chemical Technology & Biotechnology, Vol. 90, pp. 2249-2256, (2015).
[12]      Tu, X., H. Gallon, J., "Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge", Catalysis today, Vol. 211, pp. 120-125, (2013).
[13]      Guo, H., Wang, H., Wu, Q., Zhou, G., Yi, C., "Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration", Chemosphere, Vol. 159, pp. 221-227, (2016).
[14]      Wang, T., Qu, G., Ren, J., Yan, Q., Sun, Q., Liang, D., Hu, S., "Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma", Water research, Vol.  89, pp. 28-38, (2016).
[15]      Gómez-Pacheco, C. V., Sánchez-Polo, M., Rivera-Utrilla, J., López-Peñalver, J. "Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation", Chemical Engineering Journal, Vol. 178, pp. 115-121, (2011).
[16]      Cheng, J., Wang, D., Wang, B., Ning, H., Zhang, Y., Li, Y., Gao, P., "Plasma-catalytic degradation of ciprofloxacin in aqueous solution over different MnO2 nanocrystals in a dielectric barrier discharge system", Chemosphere, Vol. 253, pp. 126-155, (2020).
[17]      Tang, S., Zhao, M., Yuan, D., Li, X., Wang, Z., Zhang, X., Ke, J., "Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation", Chemosphere, pp. 129-135, (2021).
[18]      Li, H., Li, T., He, S., Zhou, J., Wang, T., Zhu, L., "Efficient degradation of antibiotics by non-thermal discharge plasma: Highlight the impacts of molecular structures and degradation pathways", Chemical Engineering Journal, Vol. 341, pp. 125-151, (2021).
 [19]     Li, S., Chen, H., Wang, X., Dong, X., Huang, Y., Guo, D., "Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system", Environmental Science and Pollution Research, Vol. 27, pp. 29599-29611, (2021).
[20]      Wang, X., Jiang, L., Li, K., Wang, J., Fang, D., Zhang, Y., Dionysiou, D. D., "Fabrication of novel Z-scheme SrTiO3/MnFe2O4 system with double-response activity for simultaneous microwave-induced and photocatalytic degradation of tetracycline and mechanism insight", Chemical Engineering Journal, Vol. 400, pp. 125-981, (2020).