سنتز سبز نانوذرات اکسید روی با عصاره میخک و سه روش حرارت‌دهی گوناگون و ارزیابی خواص آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد ممقان

2 دانشیار مهندسی شیمی، دانشگاه صنعتی سهند

3 دانشیار صنایع غذایی، گروه بهداشت مواد غذایی، دانشگاه آزاد اسلامی واحد تبریز

4 استاد صنایع غذایی، گروه علوم و صنایع غذایی دانشکدۀ کشاورزی دانشگاه تبریز

چکیده

در تحقیق نانوذرات اکسید روی با استفاده ازعصاره هیدروالکلی میخک، بهعنوان عامل طبیعی کاهنده و با استفاده از سه روش حرارتدهی هیدروترمال (دمـای ° C 121 و فشـار 5/1 بار به‌مدت
15 دقیقه)، مایکرویو (توان 800 وات و برای مدت زمان 3 دقیقه) و حرارت
دهی با هیتر همزندار (دمای ° C 150 و مدت زمان 2 ساعت) سنتز شد. ویژگی­های عصاره مذکور و نانوذرات سنتزشده با استفاده از تجزیه‌­های GC-MS ،XRD،SEM  و خصوصیات آنتی‌اکسیدانی نانوذرات بهروش DPPH و فعالیت ضدباکتریایی بهروش انتشار چاهک ارزیابی شد. نتایج حاصل از GC-MS نشان داد که عصاره مذکور حاوی ترکیبات اصلی احیا­کننده شامل اوژنول و بتاکاریوفیلن است. 4 گرم نمک نیترات روی و مقدار 20 میلیلیتر عطرمایۀ میخک با هم، مخلوط و پس از حرارتدهی با سه روش مذکور، در کوره با دمای ° C 400 و برای مدت 2 ساعت قرار داده شد تا پودر زردرنگ نانوذرات اکسید روی حاصل شود. نتایج نشان داد که متوسط اندازۀ بلورینگی نانوذرات سنتز‌شده با استفاده از مایکرویو، اتوکلاو و هیتر همزندار بهترتیب 45، 50 و 52 نانومتر است. هم‌چنین با سه روش مذکور نانوذرات اکسید روی با خاصیت آنتیاکسیدانی 89، 85 و 80 درصد بازدارندگی رادیکال‌های آزاد و خاصیت رنگ‌بری متیلنبلو تا 79، 70 و 66 درصد است. هم‌چنین نتایج نشان داد که نانوذرات سنتزشده خاصیت ضدباکتریایی بالایی در برابر هر دو گونۀ باکتری‌های اشریشیاکلی و استافیلوکوکوس اورئوس، دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Green Synthesis of Zinc Oxide Nanoparticles Using Clove Extract by Three Different Heating Methods and Evaluation of their Properties

نویسندگان [English]

  • M. Anvarinezhad 1
  • H. Jafarizadeh-Malmiri 2
  • A. Javadi 3
  • S. Azadmard-Damirchi 4
1 Ph.D. Student of Chemical Engineering, Department of Food Sciences and Technology, Mamaghan branch, Islamic Azad University
2 Associate Professor of Chemical Engineering, Sahand University of Technology
3 Associate Professor of Food Science, Department of Food Hygiene, Tabriz branch, Islamic Azad University
4 Professor of Food Science, Department of Food Sciences and Technology, Faculty of Agriculture Engineering, Tabriz University
چکیده [English]

In the present study, zinc oxide nanoparticles (ZnO NPs) have been synthesized using hydroalcoholic clove extract and three accelerated heating methods namely, hydrothermal (at 121 °C and 1.5 bar), microwave irradiation (power of 800 W for 3 min) and conventional heating using a heater and stirrer (at 150 °C for 2 h). Characteristics of the  prepared clove extract and synthesized ZnO NPs have been evaluated using GC-MS, XRD and SEM analyses and their antioxidant and antibacterial activities have been measured using DPPH and agar diffusion techniques.   GC-MS analysis indicated that the provided extract had contained two main bioactive compounds of Eugenol and β-caryophyllene, which both of them are natural reductant agents. In order to synthesis ZnO NPs, 4 g of zinc nitrate and 20 mL of the provided clove extract had been mixed together  and after heating the mixture solutions using three different heating methods,
the solutions have been placed into the laboratory furnace adjusted at 400°C for 2h to result in pale yellow powder. Obtained results indicated that the synthesized ZnO NPs using microwave, autoclave and heater and stirrer, had particle size of 45, 50 and 52 nm, antioxidant activity of 89, 85 and 80% and methylene blue degradation of 79, 70 and 66%, respectively. Furthermore, results indicated that the synthesized ZnO NPs have high antibacterial activity against both bacteria strains of Escherichia coli and Staphylococcus aerous.

کلیدواژه‌ها [English]

  • Antimicrobial Activity
  • Antioxidant Activity
  • Clove Extract
  • Green Synthesis Zinc Oxide Nanoparticles
[1]        Ahmad, N., Alam, M. K., Shehbaz, A., Khan, A., Mannan, A., Hakim, S. R., Owais, M, "Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis", Journal of drug targeting, 13 (10), pp. 555-561, (2005).
[2]        Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., Kannan, S., "Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells", Process Biochemistry, 47(12), pp. 2405-2410, (2012).
[3]        Roopan, S. M., Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., Surendra, T. V., "Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity", Industrial Crops and Products, 43, pp. 631-635, (2013).
[4]        Mittal, A. K., Chisti, Y., Banerjee, U. C., "Synthesis of metallic nanoparticles using plant extracts", Biotechnology advances, 31(2), pp. 346-356, (2013).
[5]        Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., Kalinina, N. O., "Green" nanotechnologies: synthesis of metal nanoparticles using plants", Acta Naturae 6(20), pp. 25-36, (2006).
[6]        Iravani, S., "Green synthesis of metal nanoparticles using plants", Green Chemistry, 13(10), pp. 2638-2650, (2011).
[7]        Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., Srinivasan, K., "Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3), pp. 594-598, (2011).
[8]        Song, J. Y., Jang, H. K., and Kim, B. S. "Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts" Process Biochemistry, 44(10), pp. 1133-1138, (2009).
[9]        Nagababu, E., Lakshmaiah, N., "Inhibitory effect of eugenol on non-enzymatic lipid peroxidation in rat liver mitochondria" Biochemical pharmacology, 43(11), pp. 2393-2400, (1992).
[10]      Wang, Z. L., "Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology", Annu. Rev. Phys. Chem. 55, pp. 159-196, (2004).
[11]      Jiang, W., Mashayekhi, H. Xing, B., "Bacterial toxicity comparison between nano-and micro-scaled oxide particles", Environmental pollution, 157(5), pp. 1619-1625, (2009).
[12]      Russo, T. A. Johnson, J. R., "Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem", Microbes and infection, 5(5), pp. 449-456, (2003).
[13]      Jones, N. Ray, B. Ranjit, K. T. Manna, A. C., "Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms", FEMS microbiology letters, 279(1), pp. 71-76, (2008).
[14]      Sawai, J. Yoshikawa, T., "Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay", Journal of applied microbiology, 96(4), pp. 803-809, (2004).
[15]      Anvarinezhad, M., Javadi, A., Jafarizadeh-Malmiri, H., "Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles–hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process", Green Processing and Synthesis, 9(1), pp. 375-385, (2020).
[16]      Vahidi, A., Vaghari, H., Najian, Y., Najian, M. J., Jafarizadeh-Malmiri, H., "Evaluation of three different green fabrication methods for the synthesis of crystalline ZnO nanoparticles using Pelargonium zonale leaf extract", Green Processing and Synthesis, 8(1), pp. 302-308, (2019).
[17]      Bunaciu, A. A. UdriŞTioiu, E. G. Aboul-Enein, H. Y., X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), pp. 289-299, (2015).
[18]      Sayyar, Z. Jafarizadeh-Malmiri, H., "Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion", Zeitschrift für Kristallographie-Crystalline Materials, 234(5), pp. 307-328 , (2019).
 [19]      Liu, Y., "Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers", Materials, 6(1), pp. 299-313, (2013).
[20]      Chamoli, S., "ANN and RSM approach for modeling and optimization of designing parameters for a V down perforated baffle roughened rectangular channel", Alexandria Engineering Journal, 54(3), pp. 429-446, (2015).
[21]      Azam, A., Ahmed, F., Arshi, N., Chaman, M., Naqvi, A. H., "Formation and characterization of ZnO nanopowder synthesized by sol–gel method", Journal of Alloys and Compounds, 496(1-2), pp. 399-402, (2010).
[22]      Anzabi, Y. "Biosynthesis of ZnO nanoparticles using barberry (Berberis vulgaris) extract and assessment of their physico-chemical properties and antibacterial activities", Green Processing and Synthesis, 7(2), pp. 114-121, (2018).
[23]      Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N., "Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies", Green Processing and Synthesis, 7(3), pp. 231-240, (2018).
[24]      Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y., Jafarizadeh-Malmiri, H., "Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract", Green Processing and Synthesis, 8(1), pp. 191-198, (2019).
[25]      Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., Jafarizad, A., Microwave accelerated green synthesis of gold nanoparticles using gum Arabic and their physico-chemical properties assessments. Zeitschrift für Physikalische Chemie, 232(3), pp. 325-343, (2018).
[26]      Mohammadlou, M., Maghsoudi, H., Jafarizadeh-Malmiri, H., A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal, 23(2), (2016).