مروری بر داربست‌های نانو الیاف با تمرکز بر روی مواد سازنده و روش‌های تهیه

نوع مقاله : مقاله مروری

نویسندگان

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

داربست­های نانولیفی برای رهش کنترل­ شدۀ دارو، سلول و ژن و نیز در درمان مؤثر بیماری­های مختلف به کار رفته است. بسپارهای طبیعی و همنهشتی و مخلوطی از آن­ها و نیز زیست‌سرامیک­ها از اجزای سازندۀ داربست­های نانویی هستند. از برتری‌های مهندسی بافت، کشت سهبعدی است که می­تواند در اندامها و بافتهای اصلی یافت شود؛ بنا بر این در کـشت دوبعـدی، سلول­هـا و دیگر مواد نمـی­تواننـد جهت­گیری مناسب و سهبعـدی لازم را بـه دسـت آورنـد. به همین دلیل از         روش­های نوین ساخت داربست­های نانو لیفی بهره گرفته می­ شود. از تکنیک­های مختلفی نظیر روش الکتروریسی، روش کششی، روش همنهشت الگویی، روش مش لیفی، روش خود تجمعی، روش اتصال رشتهای و فناوری ساخت فرم آزاد جامد (SFF)1 برای ساخت داربست­های نانویی استفاده شده است.
 در این مقاله­، علاوه بر مروری بر ویژگی­ها و مواد سازندۀ داربست­ها، روش­های ساخت آن‌ها بررسی می‌شود. از ویژگیهای بی‌همتای ساختارهای بر پایۀ نانوالیاف می ­توان به بازده بارگذاری بالا، عملکرد مکانیکی عالی، بسته ­بندی در محدوده ­های مختلف داروها، آزادسازی کنترل‌شده و پایداری مناسب در تحویل DNA2 پلاسمایی، پروتئین­های بزرگ دارویی،
مواد ژنتیکی و سلول­های بنیادی به مکان هدف اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

A Review on Nanofiber Scaffolds by Focusing on Constituents and Procedures

چکیده [English]

Nanofiber scaffolds have been utilized in the controlled delivering of the drug, cell, and gene into the body organs for an effective treatment of various diseases. The natural and synthetic polymers and their blends as well as the bioceramics could be considered as the constituents of nano-scaffolds. One of the advantges of tissue engineering is the three-dimensional culturing, which could be found in the original organs and tissues. Therefore, the cells and other components could not be properly directed in the two-dimentional environments. That is why, the novel fabrication methods have been introduced. Various fabrication methods like electrospinning, drawing, template synthesis, fiber-mesh, self-assembling, fiber-bonding and solid freeform fabrication techniques are applied for fabrication of nanofiber scaffolds. In the current work, in addition to review on the characteristicts and constituents of scaffolds, their fabrication technologies were focused. The unique properties of nanofiber-based structures include the high loading efficiency, superior mechanical performance, packaging for an ample range of drugs, controlled release behavior and excellent stability in the delivery of plasmid DNA, large protein drugs, genetic materials and autologous stem-cell to the target site.

کلیدواژه‌ها [English]

  • Nanofiber Scaffold
  • Electrospinning
  • Drawing
  • Giber Mesh
  • Self-assembly

 

[1]        Chaudhary, S., Garg, T., Murthy, R. S., Rath, G., Goyal, A. K., "Recent approaches of lipid- based delivery system for lymphatic targeting via oral route", J. Drug Target, 22, pp. 1 –12, (2014).
[2]        Garg, T., Singh, O., Arora, S. Murthy, R.," Scaffold: a novel carrier for cell and drug delivery", Crit Rev Ther Drug Carrier Syst., pp. 29, 1–63, (2012).
[3]        Utreja, P., Jain, S., Tiwary, A. K., "Novel drug delivery systems for sustained and targeted delivery of anti-cancer drugs: current status and future prospects", Curr. Drug Deliv., 7, pp. 152-61, (2010).
[4]        Tarun Garg., Onkar Singh., Saahil Arora, R. S. R. Murthy., Scaffold: "A Novel Carrier for Cell and Drug Delivery", Crit. Rev. Ther. Drug, 29, pp. 1–63, (2012).
 [5]        Farhana, S. A., Shantakumar, S. M., Shyale, S., et al., "Sustained release of verapamil hydrochloride from sodium alginate microcapsules", Curr. Drug Deliv., 7, pp. 98–108, 2010.
[6]        Hench, L. L., "Bioceramics", J Am Ceram Soc., 81, pp. 1705-28, (1998).
[7]        Subramanian, A., Krishnan, U. M., Sethuraman, S., "In vivo biocompati-bility of PLGA-polyhexylthiophene nanofiber scaffolds in a rat model", Biomed. Res. Int., pp. 390–518, (2013).
[8]        Girlich, C., Scholmerich J., "Topical delivery of steroids in inflam- matory bowel diseas, Curr", Drug Deliv., 9, pp. 345–349, (2012).
[9]        Babensee, J. E., Mikos, A. G., Anderson, J. M. McIntire, L. V., "Host response to tissue engineered devices", Adv Drug Del Rev., pp. 33, 111-39, (1998).
[10]      Abdelkader, H., Alany, R. G., "Controlled and continuous release ocular drug delivery systems: pros and cons", Curr. Drug Deliv., 9, pp. 421–430, (2012).
[11]      Sarvari, R., Sattari, S., Massoumi, B., Agbolaghi,
S., Beygi-Khosrowshahi, Y., Kahaie-Khosrowshahi, A., "Composite electrospun nanofibers of reduced graphene oxide grafted with poly
(3-dodecylthiophene) and poly (3-thiophene ethanol) and blended with polycaprolactone", J. Biomater. Sci., Polym. Ed., 28, pp. 1740–1761, (2017).
[12]      Basile, L., Pignatello, R., Passirani, C., "Active targeting strategies for anticancer drug nanocarriers", Curr. Drug Deliv., 9, pp. 68–255, (2012).
[13]      Sarvari, R., Akbari-Alanjaraghi, M., Massoumi, B., Beygi-Khosrowshahi, Y., Agbolaghi, S., "Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core", New J. Chem., 41, pp. 6371–6384, (2017).
[14]      Cheung, H., Lau, K., Lu, T., Hui, D., "A critical review on polymer-based bio-engineered materials for scaffold development", Composites B: Eng., 3, pp. 291–300, (2007).
[15]      Liuyun, J., Yubao, L., Chengdong, X., "Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/ carboxymethyl cellulose for bone tissue engineering", J. Biomed. Sci., 16, p. 65, (2009).
[16]      Vunjak-Novakovic, G., Freed, L. E., "Culture of organized cell communities, Adv. Drug Deliv", Rev., 33, pp. 15–30, (1998).
[17]      Marwah, H., Garg, T., Goyal, A. K., Rath, G., "Permeation enhancer strategies in transdermal drug delivery", Drug Deliv., pp. 1–15, (2014).
[18]      Kaur R., Garg T., Malik B., et al., "Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs", Drug. Deliv., pp. 1–6, (2014).
[19]      Kaur, R., Garg, T., Das Gupta, U., Gupta, P., Rath, G., Goyal, A. K., "Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs”, Artif. cells, Nanomed., and Biotechnol., 44, pp. 182–187, (2016).
[20]      Sarvari, R., Massoumi, B., Zareh, A., Beygi-Khosrowshahi, Y., Agbolaghi, S., “Porous conductive and biocompatible scaffolds on the basis of polycaprolactone and polythiophene for scaffolding”, Poly. Bull., pp. 1–18, (2019).
[21]      Massoumi, B., Sarvari, R., Zareh, A.,
Beygi-Khosrowshahi, Y., Agbolaghi, S., "Polyanizidine and Polycaprolactone Nanofibers for Designing the Conductive Scaffolds”, Fibers Polym., 19, pp. 2157–2168, (2018).
[22]      Babu, R. J., Sathigari, S., Kumar, M. T., Pandit, J. K., "Formulation of controlled release gellan gum macro beads of amoxicillin", Curr. Drug Deliv., 7,
pp. 36–43, (2010).
[23]      Lyons, F., Partap, S., O’Brien, F. J., Part 1: "scaffolds and surfaces, Technol. Health Care", 16, pp. 17–305, (2008).
[24]      Sarvari, R., Agbolaghi, S., Beygi-Khosrowshahi, Y., Massoumi, B., Bahadori, A., "3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering", Journal of Ultrafine Grained and Nanostructured Materials, 51,
pp. 101–114, (2018).
[25]      Chung, H. J., "Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering". Adv Drug Deliv Rev., 59, pp. 249-59, (2007).
[26]      Garg, T., Rath, G., Goyal, A. K., "Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery", J. Drug Target, 23, pp. 202–221, (2015).
[27]      Ma, Z., Kotaki, M., Inai, R., Ramakrishna, S., "Potential of nanofiber matrix as tissue-engineering scaffolds", Tissue Eng, 11, pp. 101-9, (2005).
[28]      Xing, X., Wang, Y., Li, B., "Nanofibers drawing and nanodevices assembly in poly (trimethylene terephthalate)", Opt. Express, 16, pp. 10815–10822, (2008).
[29]      Cheng, F., Tang, W., Li, Ch., Chen, J., Liu, H., Shen, P., Dou, Sh., "Conducting poly(aniline) nano-tubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries”, Chemistry, 12, 3082–3088, (2006).
[30]      Paquay, Y. C., de Ruijter, A. E., van der Waerden, J. P., Jansen J. A., "A one stage versus two stage surgical technique. Tissue reaction to a percutaneous device provided with titanium fiber mesh applicable for peritoneal dialysis", ASAIO J, 42, pp. 7–961, (1996).
[31]      Lavik, E., Langer, R., "Nerve regeneration, in scaffolding in tissue engineering", Ma P, Elisseeff J (eds). CRC Press, pp. 481–499, (2005).
[32]      Badrossamay, M. R., McIlwee, H. A., Goss, J. A., Parker, K. K., "Nanofiber assembly by rotary
jet- spinning", Nano Lett., 10, pp. 2257–2261, (2010).
[33]      Cima, L. G., Vacanti, J., Vacanti, C., Ingber, D., "Mooney D. and Langer R., Tissue engineering by cell-44 transplantation using degradable polymer substrates", J. Biomech. Eng., 113, pp. 143–151, (1991).
[34]      Kim, B. S., Mooney, D. J., "Engineering smooth muscle tissue with a predefined structure", J. Biomed. Mater. Res. A, 41, pp. 322–332, (1998).
[35]      Ko, Y. G., Chen, G., "Development of polymeric porous scaffolds using an ice particulate template for tissue engineering", PhD Thesis, University of Cincinnati, (2010).
[36]      Yang, S., Leong, K., Du, Z., Chua C., "The design of scaffolds for use in tissue engineering", Part II. Rapid- prototyping techniques, Tissue Eng., 8,
pp. 1–11, (2002).
 
[37]      Sachs, E., Curodeau, A., Fan, T., Bredt, J., Cima, M., Brancazio, D., "Three dimensional printing system", US Patent, p. 5807437, (1998).
[38]      Sanders, Jr R., Forsyth, J., Philbrook, K., "3-D model maker", US Patent, p. 5506607, (1996).
[39]      Hull, C., "Method for production of threedimensional objects by stereolithography", US Patent, p. 4929402, (1990).
[40]      Crump, S., "Apparatus and method for creating
three-dimensional objects", US Patent, p. 5121329, (1992).
[41]      Sachlos, E., Czernuszka, J. T., "Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds", Europ. Cells Mater., 5, pp. 29–40, (2003).