بررسی روش‌های طراحی آزمایش و آماری در بهینه‌سازی تولید هیدروژن زیستی با روش تخمیر در تاریکی
DOR: 20.1001.1.17355400.1400.20.114.4.5

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس پژوهشی سازمان پژوهش های علمی و صنعتی ایران

2 هیات علمی- سازمان پژوهش های علمی و صنعتی ایران

چکیده

هیدروژن زیستی دارای بالاترین محتوای انرژی شناخته‌شده تا به امروزاست که بر اثر احتراق آن بخار آب تولید میشود و در تبدیل به الکتریسیته در پیل سوختی‌ بازده زیادی دارد؛ در نتیجه منبع منتخب انرژی پایدار در آینده به ‌شمار می‌رود. تولید هیدروژن زیستی با روش تخمیر در تاریکینسبت به روش­های فتوسنتزی برتری‌هایی مانند بینیازی از نور، قابلیت مصرف پیش‌ماده‌های متنوع ازجمله قندهای 5 و 6 کربنه و برخی از پساب‌ها و پس‌ماندهای تبدیلی با آهنگ و بازدهی زیادتری دارد. تولید هیدروژن تخمیری فرایندی پیچیده و متأثر از چندین عامل است که با روش آماری میتوان تأثیر اندرکنش­ها را به روش بهتری درک کرد. یکی از روش‌های افزایش آهنگ و بازدهی فرایند، بهینه‌سازی تأثیر عوامل انتخابی مانند دما، pH ، نوع و غلظت پیش‌ماده، تلقیح و عوامل دیگر است که تأثیرمؤثر بر پاسخ دارند و می‌توان با به‌کارگیری روش‌های آماری به آن دست یافت. برای غربالگری و رگراسیون از روش ANOVA استفاده شده است.در میان روش‌های آماری گوناگون، طراحی‌ها مانند تکعاملی، چندعاملی، تاگوچی، پلاکت- برمن، مرکب مرکزی، باکس-بن­کن، روش تندترین­صعود/ نزول و شبکۀ عصبی­مصنوعی (ANN) و الگوریتم ژنتیک و رویۀ پاسخ سطح (RSM) در تولید هیدروژن تخمیری استفاده میشود. مقالۀ گردآوری حاضر بعضی از برتری‌ها و کاستی‌ها و تجزیه‌­و­تحلیل روشهای طراحی آزمایش و آماری را پوشش میدهد. انتخاب روش صحیح غربالگری، طراحی آزمایش و روش آماری باعث درک بیشتر اندرکنش­ها میشود و این دانش عمیق در کاهش تعداد آزمایش­ها، هزینه­ها، افزایش بازدهی و بهینهسازی فرایند تولید هیدروژن زیستی تخمیردر تاریکیمفید است.

کلیدواژه‌ها


عنوان مقاله [English]

Verification of Experimental Design and Statistical Methods for Optimization of Dark Hydrogen Production

چکیده [English]

Hydrogen has high energy content known to date, which produces water vapor due to combustion and is converted to electricity by fuel cells with high efficiency, therefore is considered as a candidate of future energy source. Production of bio- hydrogen through dark fermentation can ferment sustainable renewable substances such as C5 and C6, wastewater and converted waste, compared to photosynthetic methods requires no light, has higher production rate and yields. Fermentative hydrogen production is a complex process and is influenced by several factors, statistical methods of optimization offer relatively understandable interaction among the factors. One of the approach to increase the rate and yield of reaction is to screen, model, and optimize factors which have strong influence on the response comprising inucolum, operating temperature, pH, type and concentration of substrates etc by employing appropriate method. For screening factors and performing regression ANOVA is used. The experimental design method used for screening and understanding the effect of factors are
one-factor-at-a-time, full factorial, fractional factorial, Taguchi, Plackett–Burman,central composite and
Box–Behnken design, steepest inclined or declined, neural network ANN, genetic algorithms and, for optimization response surface methodology is frequently applied. The overview, presents appropriate advantages and disadvantages of analyzing abilities of modeling of experiments and addresses few statistical methods of optimization to understand complex effect of factors on fermentative dark hydrogen production. Such deep knowldge leads in understanding more in details the interactions of complex reactions involved and to select sound statistical method of optimization, resulting in reasonable reduced number of experiments to achieve higher rate and yield of production at lower cost of operation.

کلیدواژه‌ها [English]

  • Biohydrogen Production by Dark Fermentation
  • Design of experiments
  • Plackett–Burman Design
  • Response Surface Methodology
  • Neural Network
Rostami, K., Esfahani Bolandbalaei, Z., Ozgoli, H., "Sustainable biohydrogen a candidate to replce carbon based energy", Energy models in emerging economies, Editior Sasi K. Kottayil, Astral International PVT. LTD., New Delhi, pp. 153-167, (2018).
[2]       Saravanan, A. P., Mathimani, T., Deviram, G., Rajendran, K., Pugazhendhi, A., "Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel", Journal of Cleaner Production, 193, pp. 734-747, (2018).
[3]       Das, D., Veziro-lu, T. N., "Hydrogen production by biological processes: A survey of literature", International Journal of Hydrogen Energy, 26(1),
pp. 13-28, (2001).
[4]       Tepari, E. A., Nakhla, G., Haroun, B. M., Hafez, H., "Co-fermentation of carbohydrates and proteins for biohydrogen production: Statistical optimization using Response Surface Methodology", International Journal of Hydrogen Energy, 45(4), pp. 2640-2654, (2020).
[5]      دریپچو، ک. ام.، نهوان، ن.، واکر، ت. اچ.، "مهندسی سوخت‌های زیستی فناوری فرایند"، مترجم: رستمی، خ.، (1398).
[6]      بسحاق، ف. و رستمی، خ.، "جایگاه و ظرفیت‌هاى ایران در تولید سوخت زیستى"، هفتمین همایش ملی و اولین کنفرانس بین‌المللی انرژی تجدیدپذیر و تولید پراکندۀ ایران، (1398).
[7]      بسحاق، ف.، رستمی، خ. و اصفهانی، ز.، "مروری بر تأثیر عوامل شیمیایى و فیزیکى جهش‌زا در افزایش تولید هیدروژن زیستى به روش تخمیر در تاریکى توسط سویه انتروباکتر"، نشریۀ مهندسی شیمی ایران. 17، 17–6، (1397).
[8]     Lee, D. H. "Biohydrogen yield efficiency and the benefits of dark, photo and dark-photo fermentative production technology in circular Asian economies", International Journal of Hydrogen Energy. (Available online 5 October 2020). In Press.
[9]      اصفهانی بلندبالایی، ز، رستمی، خ، "بررسی روش‌های جداسازی انتروباکترهای تولیدکنندۀ هیدروژن به روش تخمیر در تاریکی"، ششمین کنفرانس بین‌المللی مهندسی محیط زیست و منابع طبیعی، تهران، ایران، (چهارم ژولای 2020)
[10]     Nandi, R., Sengupta, S., "Microbial production of hydrogen: an overview", Critical Reviews in Microbiology, 24(1), pp. 61-84, (1998).
[11]     Hallenbeck, P. C., Benemann, J. R., "Biological hydrogen production; fundamentals and limiting processes", International Journal of Hydrogen Energy, 27(11-12), pp. 1185-1193, (2002).
 
[12]        Toledo-Alarcón, J., Capson-Tojo, G., Marone, A., Paillet, F., Júnior, A. D. N. F., Chatellard, L., Bernet, N. Trably, E., "Basics of bio-hydrogen production by dark fermentation. In Bioreactors for microbial biomass and energy conversion (pp. 199-220)", Springer, Singapore, (2018).
[13]        Wang, J., Yin, Y. Biohydrogen production from organic wastes. Springer. (2017).
[14]        Shao, W., Wang, Q., Rupani, P. F., Krishnan, S., Ahmad, F., Rezania, S., Rashid, M.A., Sha, C., Din, M. F. M., "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species", Energy, 197, Article 117199, (2020).
[15]        Mu, Y., Wang, G., Yu, H. Q., "Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures", Bioresource Technology, 97(11),
pp. 1302–1307, (2006).
[16]        Mu, Y., Zheng, X. J., Yu, H. Q., Zhu, R. F., "Biological hydrogen production by anaerobic sludge at various temperatures", International Journal of Hydrogen Energy, 31, pp. 780–785, (2006).
[17]        Wang, J., Wan, W., "Application of desirability function based on neural network for optimizing biohydrogen production process", International Journal of Hydrogen Energy, 34, pp. 1253-1259, (2009).
[18]        Zwietering, M. H., Jongenburger, I., Rombouts, F. M., Van't Riet, K. J. A. E. M., "Modeling of the bacterial growth curve", Applied and Environmental Microbiology, 56(6), pp. 1875-1881, (1990).
[19]        Mu, Y., Yu, H. Q., Wang, G., "A kinetic approach to anaerobic hydrogen-producing process", Water Research, 41(5), pp. 1152–1160, (2007).
[20]        Lay, J. J., Li, Y. Y., Noike, T., "Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor", Water Research, 32(12), pp. 3673-3679, (1998).
[21]        Lay, J. J., Lee, Y. J., Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Research, 33(11), pp. 2579-2586, (1999).
[22]        Ulhiza, T. A., Puad, N. I. M., Azmi, A. S., "Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using Response Surface Methodology", International Journal of Hydrogen Energy, 43(49),
pp. 22148-22158, (2018).
[23]        Zhang, T., Liu, H., Fang, H. H., "Biohydrogen production from starch in wastewater under thermophilic condition." Journal of Environmental Management, 69(2), pp.149-156, (2003).
[24]        Keskin, T., Abubackar, H. N., Yazgin, O., Gunay, B., Azbar, N., "Effect of percolation frequency on biohydrogen production from fruit and vegetable wastes by dry fermentation", International Journal of Hydrogen Energy, 44(34), pp.18767-18775, (2019).
[25]        Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., Almadidy, A., "Influence of initial pH on hydrogen production from cheese whey", Journal of Biotechnology, 120(4), pp. 402-409, (2005).
[26]        Pan, C. M., Fan, Y. T., Zhao, P., Hou, H. W., "Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3", International Journal of Hydrogen Energy, 33(20), pp. 5383-5391, (2008).
[27]        Boshagh, F., Rostami, Kh., Moazami, N., "Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube", International Journal of Hydrogen Energy, 44(28), pp. 14395-14405, (2019).
[28]        Ziara, R. M., Miller, D. N., Subbiah, J., Dvorak, B. I., "Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community", International Journal of Hydrogen Energy, 44(2), pp. 661-673, (2019).
[29]        Wang, C. H., Lin, P. J., Chang, J. S., "Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochemistry", 41(6), pp. 1353-1358, (2006).
[30]        Veeramalini, J. B., Selvakumari, I. A. E., Park, S., Jayamuthunagai, J., Bharathiraja, B., "Continuous production of biohydrogen from brewery effluent using co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes", Bioresource Technology, 286, Article 121402, (2019).
[31]        Boshagh, F., Rostami, Kh., Moazami, N., "Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement", Biochemical Engineering Journal, 144, pp. 64-72, (2019).
[32]        Rambabu, K., Bharath, G., Thanigaivelan, A., Das, D. B., Show, P. L., Banat, F. "Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation", Bioresource Technology, 319. Article 124243. (2021).
[33]        Argun, H., Dao, S., "Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition", International Journal of Hydrogen Energy, 42(4), pp. 2569-2574, (2017).
[34]        Ghosh, D., Hallenbeck, P. C. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. International Journal of Hydrogen Energy, 34(19),
pp. 7979-7982, (2009).
[35]        Chittibabu, G., Nath, K., Das, D., "Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21", Process Biochemistry, 41(3), pp. 682-688, (2006).
[36]        Abdullah, M. F., Jahim, J. M., Abdul, P. M., Mahmod, S. S., "Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME)", Biocatalysis and Agricultural Biotechnology, 23, Article: 101445, (2020).
[37]        Ntaikou, I., Gavala, H. N., Kornaros, M., Lyberatos, G., "Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus", International Journal of Hydrogen Energy, 33(4),
pp. 1153-1163, (2008).
[38]        Wang, J., Wan, W., "Effect of Fe(2+) concentration on fermentative hydrogen production by mixed cultures", International Journal of Hydrogen Energy, 33(4),
pp. 1215-1220, (2008).
[39]        Yin, Y., Wang, J., "Characterization and hydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge", International Journal of Hydrogen Energy, 41(48), pp. 22793-22801, (2016).
[40]        Zhao, X., Xing, D., Fu, N., Liu, B., Ren, N., "Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108", Bioresource Technology, 102(18), pp. 8432-8436, (2011).
[41]        Rambabu, K., Show, P. L., Bharath, G., Banat, F., Naushad, M., Chang, J. S., "Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405", International Journal of Hydrogen Energy, 45(42), pp. 22271-22280. (2020).
[42]        Ito, T., Nakashimada, Y., Kakizono, T., Nishio, N., "High-yield production of hydrogen by Enterobacter aerogenes mutants with decreased α-acetolactate synthase activity", Journal of Bioscience and Bioengineering, 97(4), pp. 227-232, (2004).
[43]        Liu, I. C., Whang, L. M., Ren, W. J., Lin, P. Y., "The effect of pH on the production of biohydrogen by clostridia: thermodynamic and metabolic considerations", International Journal of Hydrogen Energy, 36(1), pp. 439-449, (2011).
[44]        Sompong, O., Prasertsan, P., Karakashev, D., Angelidaki, I., "Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2", International Journal of Hydrogen Energy, 33(4), pp. 1204-1214, (2008).
[45]        Mitchell, R. J., Kim, J. S., Jeon, B. S., Sang, B. I., "Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the glucose concentration and hydraulic retention time", Bioresource Technology, 100(21), pp. 5352-5355, (2009).
[46]        Kim, S. H., Han, S. K., Shin, H. S., "Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter", Process Biochemistry, 41(1), pp. 199-207, (2006).
[47]        Liu, G., Shen, J., "Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria", Journal of Bioscience and Bioengineering, 98(4), pp. 251-256, (2004).
[48]        Kim, J. O., Kim, Y. H., Yeom, S. H., Song, B. K., Kim, I. H., "Enhancing continuous hydrogen gas production by the addition of nitrate into an anaerobic reactor", (2006). Process Biochemistry, 41(5),
pp. 1208-1212, (2006).
[49]        Oh, Y. K., Seol, E. H., Kim, J. R., Park, S., "Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19", International Journal of Hydrogen Energy, 28(12), pp. 1353-1359, (2003).
[50]        Yuan, Z., Yang, H., Zhi, X., Shen, J., "Enhancement effect of L-cysteine on dark fermentative hydrogen production", International Journal of Hydrogen Energy, 33(22), pp. 6535-6540, (2008).
[51]        Akutsu, Y., Li, Y. Y., Harada, H., Yu, H. Q., "Effects of temperature and substrate concentration on biological hydrogen production from starch", International Journal of Hydrogen Energy, 34(6),
pp. 2558-2566, (2009).
[52]        Song, W., Ding, L., Liu, M., Cheng, J., Zhou, J., Li, Y. Y. "Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1", Science of the Total Environment, 716, Article 134695. (2020).
[53]        Nasirian, N., Almassi, M., Minaei, S., Widmann, R., "Development of a method for biohydrogen production from wheat straw by dark fermentation", International Journal of Hydrogen Energy, 36(1),
pp. 411-420, (2011).
[54]        Moreno-Dávila, I. M. M., Ríos-González, L. J., Rodríguez-de la Garza, J. A., Morales-Martínez, T. K., Garza-García, Y., "Biohydrogen production from paper industry wastes by SSF: A study of the influence of temperature/enzyme loading", International Journal of Hydrogen Energy, 44(24),
pp. 12333-12338, (2019).
[55]        Wang, Y., Mu, Y., Yu, H. Q., "Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges", International Journal of Hydrogen Energy, 32(8),
pp. 1086-1094, (2007).
[56]        Chou, C. H., Wang, C. W., Huang, C. C., Lay, J. J., "Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen", International Journal of Hydrogen Energy, 33(5), pp. 1550-1558, (2008).
[57]        Wu, K. J., Chang, J. S., "Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix", Process Biochemistry, 42(2), pp. 279-284, (2007).
[58]        Zhong, J., Stevens, D. K. Hansen, C.L., "Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR)", International Journal of Hydrogen Energy, 40, pp. 15470-15476, (2015).
[59]        Valdez‐Vazquez, I., Ríos‐Leal, E., Muñoz‐Páez, K. M., Carmona‐Martínez, A., Poggi‐Varaldo, H. M., "Effect of inhibition treatment, type of inocula, and incubation temperature on batch H2 production from organic solid waste", Biotechnology and Bioengineering, 95(3), pp. 342-349, (2006).
[60]        Kalogo, Y., Bagley, D. M., "Fermentative hydrogen gas production using biosolids pellets as the inoculum source", Bioresource Technology, 99(3), pp. 540-546, (2008).
[61]        Mishra, P., Das, D., "Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent", International Journal of Hydrogen Energy, 39(14), pp. 7496-7507, (2014).
[62]        Levin, D. B., Islam, R., Cicek, N., Sparling, R., "Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates", International Journal of Hydrogen Energy, 31(11),
pp. 1496-1503, (2006).
[63]        Lay, J. J., "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose", Biotechnology and Bioengineering, 74(4),
pp. 280-287, (2001).
[64]        Chang, F. Y., Lin, C. Y., "Calcium effect on fermentative hydrogen production in an anaerobic up-flow sludge blanket system", Water Science and Technology, 54(9), pp. 105-112, (2006).
[65]        Ueno, Y., Sasaki, D., Fukui, H., Haruta, S., Ishii, M., Igarashi, Y., "Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora", Journal of Applied Microbiology, 101(2),
pp. 331-343, (2006).
[66]        Van Niel, E. W. J., Budde, M. A. W., De Haas, G. G., Van der Wal, F. J., Claassen, P. A. M., Stams, A. J. M., "Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii", International Journal of Hydrogen Energy, 27(11-12),
pp. 1391-1398, (2002).
[67]        Yang, H., Shen, J., "Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch", International Journal of Hydrogen Energy, 31(15), pp. 2137-2146, (2006).
[68]        Yokoi, H., Saitsu, A., Uchida, H., Hirose, J. U. N., Hayashi, S., Takasaki, Y., "Microbial hydrogen production from sweet potato starch residue", Journal of Bioscience and Bioengineering, 91(1), pp. 58-63, (2001).
[69]        Hu, B., Chen, S., "Pretreatment of methanogenic granules for immobilized hydrogen fermentation", International Journal of Hydrogen Energy, 32(15),
pp. 3266-3273, (2007).
[70]        Zhang, Y., Shen, J., "Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria", International Journal of Hydrogen Energy, 31(4), pp. 441-446, (2006).
[71]        Salerno, M. B., Park, W., Zuo, Y., Logan, B. E., "Inhibition of biohydrogen production by ammonia", Water Research, 40(6), pp. 1167-1172, (2006).
[72]        Chen, C. C., Lin, C. Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor", Advances in Environmental Research, 7(3),
pp. 695-699, (2003).
[73]        Luftig, J. T., Jordan, V. S., "Design of experiments in quality engineering (No. 04; T175, L8.)", New York: McGraw-Hill, (1998).
[74]        Ballantyne, K. N., Van Oorschot, R. A., Mitchell, R. J., "Reduce optimisation time and effort: Taguchi experimental design methods", Forensic Science International: Genetics Supplement Series, 1(1),
pp. 7-8, (2008).
[75]        Lin, C. Y., Lay, C. H., "A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora", International Journal of Hydrogen Energy, 30(3), pp. 285-292, (2005).
[76]        Kumari, S., Das, D., "Improvement of biohydrogen production using acidogenic culture", International Journal of Hydrogen Energy 42(7), pp. 4083-4094, (2017).
[77]        Kennedy, M., Krouse, D., "Strategies for improving fermentation medium performance: a review", Journal of Industrial Microbiology and Biotechnology, 23(6), pp. 456-475, (1999).
[78]        Bakonyi, P., Nemestóthy, N., Lövitusz, É.,
Bélafi-Bakó, K., "Application of Plackett–Burman experimental design to optimize biohydrogen fermentation by E. coli (XL1-BLUE)", International Journal of Hydrogen Energy, 36(21),
pp. 13949-13954, (2011).
[79]        Lin, C. Y., Lay, C. H., "Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora", International Journal of Hydrogen Energy, 29(3),
pp. 275-281, (2004).
[80]        Pan, C. M., Fan, Y. T., Xing, Y., Hou, H. W., Zhang, M. L., "Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2", Bioresource Technology, 99(8), pp. 3146-3154, (2008).
[81]        Keskin, T., Arslan, K., Abubackar, H. N., Vural, C., Eroglu, D., Karaalp, D., Yanik, J.m., Ozdemir, G. Azbar, N., "Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes", International Journal of Hydrogen Energy, 43(23), pp. 10666-10677, (2018).
[82]        Ginkel, S. V., Sung, S., Lay, J. J., "Biohydrogen production as a function of pH and substrate concentration", Environmental Science & Technology, 35(24), pp. 4726-4730, (2001).
[83]        Rai, P., Pandey, A., Pandey, A., "Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion", International Journal of Hydrogen Energy, 44(47), pp. 25505-25513, (2019).
[84]        Argun, H., Kargi, F., Kapdan, I. K., Oztekin, R., "Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate", International Journal of Hydrogen Energy, 33(7), pp. 1813-1819, (2008).
[85]        Karlsson, A., Vallin, L., Ejlertsson, J., "Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure", International Journal of Hydrogen Energy, 33(3),
pp. 953-962, (2008).
[86]        Rasdi, Z., Rahman, N. A. A., Abd-Aziz, S., Lai-Yee, P., Zulkhairi, M., Yusoff, M., Mei-Ling, M., Ali Hassan, M., "Statistical optimization of biohydrogen production from palm oil mill effluent by natural microflora", The Open Biotechnology Journal, 3(1), pp. 79-86, (2009).
[87]        Cuetos, M. J., Gomez, X., Escapa, A., Moran, A., "Evaluation and simultaneous optimization of bio-hydrogen production using 32 factorial design and the desirability function", Journal of Power Sources, 169(1), pp. 131-139, (2007).
[88]        Lay, J. J., Fan, K. S., Hwang, J. I., Chang, J. I., Hsu, P. C., "Factors affecting hydrogen production from food wastes by Clostridium-rich composts", Journal of Environmental Engineering, 131(4), pp. 595-602, (2005).
[89]        Lay, J. J., "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnology and Bioengineering, 68(3),
pp. 269-278, (2000).
[90]        Zhao, B. H., Yue, Z. B., Zhao, Q. B., Mu, Y., Yu, H. Q., Harada, H., Li, Y. Y., "Optimization of hydrogen production in a granule-based UASB reactor", International Journal of Hydrogen Energy, 33(10),
pp. 2454-2461, (2008).
[91]        Fan, Y., Li, C., Lay, J. J., Hou, H., Zhang, G., "Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost", Bioresource Technology, 91(2), pp. 189-193, (2004).
[92]        Mu, Y., Wang, G., Yu, H. Q., "Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures", Enzyme and Microbial Technology, 38(7), pp. 905-913, (2006).
[93]        Wang, G., Mu, Y., Yu, H. Q., "Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater", Biochemical Engineering Journal, 23(2), pp. 175-184, (2005).
[94]        Jo, J. H., Lee, D. S., Park, D., Choe, W. S., Park, J. M., "Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods", Bioresource Technology, 99(6), pp. 2061-2066, (2008).
[95]        Chong, M. L., Yee, P. L., Aziz, S. A., Rahim, R. A., Shirai, Y., Hassan, M. A., "Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6", International Journal of Hydrogen Energy, 34(21), pp. 8859-8865, (2009).
[96]        Martinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Soccol, V. T., de Souza Vandenberghe, L.P., Woiciechowski, A.L. Soccol, C. R. Biohydrogen production in cassava processing wastewater using microbial consortia: process optimization and kinetic analysis of the microbial community. Bioresource Technology, 309. Article 123331. (2020).
[97]        Saraphirom, P., Reungsang, A., "Optimization of biohydrogen production from sweet sorghum syrup using statistical methods", International Journal of Hydrogen Energy, 35(24), pp. 13435-13444, (2010).
[98]        Long, C., Cui, J., Liu, Z., Liu, Y., Long, M., Hu, Z., "Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1", International Journal of Hydrogen Energy, 35(13), pp. 6657-6664, (2010).
[99]        Khamtib, S., Reungsang, A., "Co-digestion of oil palm trunk hydrolysate with slaughterhouse wastewater for thermophilic bio-hydrogen production by Thermoanaerobacterium thermosac-charolyticm KKU19", International Journal of Hydrogen Energy, 39(13), pp.6872-6880, (2014).
[100]     Gilmour, S. G., "Response surface designs for experiments in bioprocessing", Biometrics, 62(2),
pp. 323-331, (2006).
[101]     Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Escaleira, L. A. "Response surface methodology (RSM) as a tool for optimization in analytical chemistry", Talanta, 76(5), pp. 965-977, (2008).
[102]     Sangyoka, S., Reungsang, A., Lin, C. Y. "Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method", Sustainable Environment Research, 26(5), pp. 235-242. (2016).
[103]     Boshagh, F., Rostami, K. "A Review of Application of Experimental Design Techniques Related to Dark Fermentative Hydrogen Production", Journal of Renewable Energy and Environment, 7(2), pp. 27-42, (2020).
[104]     Lv, C., Xing, Y., Zhang, J., Na, X., Li, Y., Liu, T., Cao, D., Wang, F. Y. "Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system", IEEE Transactions on Industrial Informatics, 14(8), pp. 3436-3446, (2017).
[105] عالم تبریز، ا.، زندیه، م.، رحیمی، م.، "الگوریتم‌های فرا ابتکاری در بهینه‌سازی ترکیبی (ژنتیک، شبکۀ عصبی، آنیل شبیه‌سازی شده، جستجو ممنوع و الگوریتم مورچگان)"، انتشارات صفّار، (1392).
 
[106]   Prakasham, R. S., Sathish, T., Brahmaiah, P., "Imperative role of neural networks coupled genetic algorithm on optimization of biohydrogen yield", International Journal of Hydrogen Energy, 36(7),
pp. 4332-4339, (2011).
[107]     Wang, J., Wan, W., "Application of desirability function based on neural network for optimizing biohydrogen production process", International Journal of Hydrogen Energy, 34(3): pp. 1253-1259, (2009).