الگوسازی هم‌دمای جذب دی‌اکسیدکربن و سولفید هیدروژن با استفاده از چارچوب‌های فلزی- آلی
DOR: 20.1001.1.17355400.1400.20.114.2.3

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت

چکیده

در این تحقیق ظرفیت جذب و ذخیره­سازی دی‌اکسیدکربن و سولفید هیدروژن
با استفاده از چارچوب­های فلزی- آلی مطالعه و الگوسازی شده است. بررسی چهار نوع جاذب مختلف فلزی- آلی از نوع بسپار
کوئوردیناسیونیمیکرومتخلخل شامل MOF-2(Zn2(BDC)2)، MOF-74(Zn2(DHBDC))، IRMOF-1(Zn4O(BDC)3) وMOF-177 (Zn4O(BTB)2)  نشان داد که با توجه به ساختار و گروه­های عاملی مختلف این جاذب­ها باعث شده عملکرد متفاوتی از خود در جذب گازها ارائه کنند. داده­های تجربی هم­دما با الگو­های هم­دمای دو مؤلفه‌ا‌ی ارزیابی شد. برای محاسبۀ مؤلفه‌های الگو­ها از روش عددی برازش غیر خطی استفاده شد. بر اساس نتایج الگوسازی، الگو­های دو مؤلفه‌‌ای پیش‌بینی قابل قبولی از داده­های تجربی جذب سولفید هیدروژن و دی‌اکسیدکربن نشان داد. الگوی هیل در مقایسه با دیگر الگو­ها دقت بیشتری دارد. مقادیر مؤلفۀ‌ انرژی الگوی دوبینین-رادوشکویچ برای تمامی جاذب­ها نشان داد که فرایند جذب هر دو گاز فیزیکی است و جاذب IRMOF-1 برای گاز سولفید هیدروژن و MOF-74 و  MOF-2 برای دی‌اکسیدکربن، مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Two Parameters Isotherm of CO2 and H2S Adsorption Using Metal Organic Frameworks (MOFs)

چکیده [English]

In this research, the adsorption potential of carbon dioxide and hydrogen sulfide storage in metal organic frameworks has been studied and modeled. Studying four different type of micro porous coordination polymer adsorbents metal organic frameworks including MOF-2 (Zn2 (BDC)2), MOF-74 (Zn2 (DHBDC)), IRMOF-1 (Zn4O (BDC)3) and MOF-177 (Zn4O (BTB)2) showed that the adsorbent have different structure caused different performance in gases adsorption. For adsorption isotherm modeling of these adsorbents used two parameters isotherm models. For calculation parameters of the models was used nonlinear regression technique. The results showed that the models have good agreements with experimental data. Hill model has high accuracy to compare with other models. The parameter values of D-R model for all adsorbents showed that the processes were physical adsorption and IRMOF-1 for H2S and MOF-74 and MOF-2 for CO2 adsorption were suitable.

کلیدواژه‌ها [English]

  • gas adsorption
  • Metal Organic Frameworks
  • Carbon dioxide
  • Hydrogen Sulfide
  • Isotherm Modeling
[1]        Polat, H. M., Kavak, S., Kulak, H., Uzun, A., Keskin, S., "CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments", Chemical engineering journal,
p. 124916, (2020).
[2]        Shi, G., Xu, W., Wang, J., Yuan, Y., Chaemchuen, S., Verpoort, F., "A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions", Journal of CO2 Utilization, 39,
p. 101177, (2020).
[3]        Yang, R. T., "Adsorbents, Fundamentals and Applications", University of Michigan, Department of Chemical Engineering, (2003).
 
 
[4]        Li, H., Eddaoudi, M., O'Keeffe M., Yaghi, O. M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", nature, 402, pp. 276-279, (1999).
[5]        Ghanbari, T., Abnisa, F., Daud, W. M. A. W., "A review on production of metal organic frameworks (MOF) for CO2 adsorption", Science of The Total Environment, 707, p. 135090, (2020).
[6]        Liu, J., Chen, C., Zhang, K., Zhang, L., "Applications of metal–organic framework composites in CO2 capture and conversion", Chinese Chemical Letters, pp. 12934-12943, (2020).
[7]        Rowsell, J. L., Millward, A. R., Park, K. S., Yaghi, O. M., "Hydrogen sorption in functionalized
metal− organic frameworks", Journal of the American Chemical Society, 126, pp. 5666-5667, (2004).
[8]        Bourrelly, S., Llewellyn, P. L., Serre C., Millange, F., Loiseau, T., Férey, G., "Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47", Journal of the American Chemical Society, 127, pp. 13519-13521, (2005).
[9]        Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y., Férey, G., "How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL‐53", Angewandte Chemie, 118, pp. 7915-7918, (2006).
[10]      Dybtsev, D. N., Chun, H., Yoon, S. H., Kim D., Kim K., "Microporous manganese formate: a simple metal− organic porous material with high framework stability and highly selective gas sorption properties", Journal of the American Chemical Society, 126,
pp. 32-33, (2004).
[11]      Hayashi, H., Cote, A.P., Furukawa, H., O’Keeffe, M., Yaghi O. M., "Zeolite A imidazolate frameworks", Nature materials, 6, pp. 501-506, (2007).
[12]      Xue, M., Ma, S., Jin, Z., Schaffino, R. M., Zhu, G.
-S., Lobkovsky, E. B., Qiu, S. -L., Chen B., "Robust metal− organic framework enforced by
triple-framework interpenetration exhibiting high H2 storage density", Inorganic chemistry, 47,
pp. 6825-6828, (2008).
[13]      Babarao, R. Jiang J., "Molecular screening of
metal− organic frameworks for CO2 storage", Langmuir, 24, pp. 6270-6278, (2008).
[14]      Walton, K. S., Millward, A. R., Dubbeldam, D., Frost, H., Low, J. J., Yaghi, O. M., Snurr R. Q., "Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks", Journal of the American Chemical Society, 130, pp. 406-407, (2008).
[15]      Bae, Y. -S., Farha, O. K., Spokoyny, A. M., Mirkin, C. A., Hupp, J. T., Snurr R. Q., "Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane", Chemical communications, pp. 4135-4137, (2008).
[16]      Yazaydın, A. O. Z. R., Snurr, R. Q., Park, T. -H., Koh, K., Liu, J., LeVan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D. B., "Screening of metal− organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach", Journal of the American Chemical Society, 131, pp. 18198-18199, (2009).
[17]      Demessence, A., D’Alessandro, D. M., Foo, M. L., Long, J. R., "Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine", Journal of the American Chemical Society, 131, pp. 8784-8786, (2009).
[18]      Furukawa, H. Yaghi O. M., "Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications", Journal of the American Chemical Society, 131, pp. 8875-8883, (2009).
[19]      Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi O. M., "Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties", Journal of the American Chemical Society, 131, pp. 3875-3877, (2009).
[20]      Galli, S., Masciocchi, N., Tagliabue, G., Sironi, A., Navarro, J. A., Salas, J. M., Mendez‐Liñan, L., Domingo, M., Perez-Mendoza M., Barea E., "Polymorphic coordination networks responsive to CO2, moisture, and thermal stimuli: porous cobalt (II) and zinc (II) Fluoropyrimidinolates", Chemistry–A European Journal, 14, pp. 9890-9901, (2008).
[21]      Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O’Keeffe, M., Kim, J., "Ultrahigh porosity in metal-organic frameworks", Science, 329, pp. 424-428, (2010).
[22]      Zhang, S. -M., Chang, Z., Hu, T. -L., Bu, X. -H., "New three-dimensional porous metal organic framework with tetrazole functionalized aromatic carboxylic acid: synthesis, structure, and gas adsorption properties", Inorganic chemistry, 49,
pp. 11581-11586, (2010).
[23]      Zhang, Z., Xiang, S., Chen, Y. -S., Ma, S., Lee, Y., Phely-Bobin, T., Chen, B., "A Robust Highly Interpenetrated Metal−Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules", Inorganic chemistry, 49, pp. 8444-8448, (2010).
[24]      Zhang, Z., Xiang, S., Rao, X., Zheng, Q., Fronczek, F. R., Qian, G., Chen B., "A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene", Chemical communications, 46, pp. 7205-7207, (2010).
[25]      Seo, J., Jin, N., Chun H., "Topologies of Metal−Organic Frameworks Based on Pyrimidine-5-carboxylate and Unexpected Gas-Sorption Selectivity for CO2", Inorganic chemistry, 49, pp. 10833-10839, (2010).
[26]      Xie, J., Yan, N., Liu, F., Qu, Z., Yang, S., Liu, P., "CO2 adsorption performance of ZIF-7 and its endurance in flue gas components", Frontiers
of Environmental Science & Engineering, 8,
pp. 162-168, (2014).
[27]      Qasem, N. A. A., Ben-Mansour, R., "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74", Applied Energy, 230, pp. 1093-1107, (2018).
[28]      Hossain, M. I., Cunningham, J. D., Becker, T. M., Grabicka, B. E., Walton, K. S., Rabideau, B. D., Glover T. G., "Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66", Chemical Engineering Science, 203, pp. 346-357, (2019).
[29]      Chen, W., Zhang, Z., Hou, L., Yang, C., Shen, H., Yang, K., Wang, Z., "Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance", Separation and Purification Technology, 250,
p. 117198, (2020).
[30]      Hwang, Y. K., Hong, D. -Y., Chang, J. -S., Seo, H., Yoon, M., Kim, J., Jhung, S. H., Serre, C., Férey, G., "Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101", Applied Catalysis A: General, 358, pp. 249-253, (2009).
[31]      Heymans, N., Vaesen, S., De Weireld G., "A complete procedure for acidic gas separation by adsorption on MIL-53 (Al)", Microporous and Mesoporous Materials, 154, pp. 93-99, (2012).
[32]      Saha, D., Zacharia, R., Lafi, L., Cossement, D., Chahine R., "Synthesis, characterization and hydrogen adsorption on metal-organic frameworks Al, Cr, Fe and Ga-BTB", Chemical engineering journal, 171, pp. 517-525, (2011).
[33]      Saha, D., Zacharia, R., Lafi, L., Cossement, D., Chahine R., "Synthesis, characterization and hydrogen adsorption properties of metal–organic framework Al-TCBPB", International Journal of Hydrogen Energy, 37, pp. 5100-5107, (2012).
[34]      Jhung, S. H., Khan, N. A., Hasan Z., "Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption", CrystEngComm, 14, pp. 7099-7109, (2012).
[35]      Wang, X. -L., Fan, H. -L., Tian, Z., He, E. -Y., Li, Y., Shangguan, J., "Adsorptive removal of sulfur compounds using IRMOF-3 at ambient temperature", Applied surface science, 289, pp. 107-113, (2014).
[36]      Ma, Y., Su, H., Kuang, X., Li, X., Zhang, T., Tang, B., "Heterogeneous nano metal–organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells", Analytical chemistry, 86, pp. 11459-11463, (2014).
[37]      Xia, L., Cui, Q., Suo, X., Li, Y., Cui, X., Yang, Q., Xu, J., Yang, Y., Xing, H., "Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism", Advanced Functional Materials, 28, p. 1704292, (2018).
[38]      Martínez-Ahumada, E., López-Olvera, A., Jancik, V., Sánchez-Bautista, J. E., González-Zamora, E., Martis V., Williams D. R., Ibarra I.A., "MOF Materials for the Capture of Highly Toxic H2S and SO2", Organometallics, 39, pp. 883-915, (2020).
[39]      Wang, R., Mi, J. -S., Dong, X. -Y., Liu, X. -F., Lv, Y. -R., Du, J., Zhao, J. -Y., Zang S. -Q., "Creating a Polar Surface in Carbon Frameworks from Single-Source Metal–Organic Frameworks for Advanced CO2 Uptake and Lithium–Sulfur Batteries", Chemistry of Materials, 31, pp. 4258-4266, (2019).
[40]      Pai, K. N., Baboolal, J. D., Sharp, D. A., Rajendran, A., "Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption", Separation and Purification Technology, 211, pp. 540-550, (2019).
[41]      Gaikwad, S., Kim, S. -J., Han S., "Novel
metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases", Journal of Industrial and Engineering Chemistry, 87, pp. 250-263, (2020).
[42]      Khambhaty, Y., Mody, K., Basha, S., Jha, B., "Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger", Chemical engineering journal, 145, pp. 489-495, (2009).
[43]      Langmuir, I., "The constitution and fundamental properties of solids and liquids. Part I. Solids", Journal of the American Chemical Society, 38,
pp. 2221-2295, (1916).
[44]      Freundlich, H. M. F., "Over the adsorption in solution", Philosophy Chemistry Journal, 57,
pp. 385–471, (1906).
[45]      Dubinin, M. M., Radushkevich, L. V., "The equation of the characteristic curve of the activated charcoal", Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, pp. 331–337, (1947).
[46]      Ghaemi, A., Hemmati, A. R., "Mass Transfer Coefficent for PZ+ CO2+H2O system in a packed column", Heat and Mass Transfer, (2020).
[47]      Jnr, M. H., Spiff, A. I., "Equilibrium sorption study of Al3+, CO2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass", Acta Chim. Slov, 52, pp. 174-181, (2005).
[48]      Boulinguiez, B., Le Cloirec, P., Wolbert, D., "Revisiting the Determination of Langmuir Parameters Application to Tetrahydrothiophene Adsorption onto Activated Carbon", Langmuir, 24, pp. 6420-6424, (2008).
[49]      Kumar, K. V., Sivanesan, S., "Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and
non-linear regression methods", Journal of Hazardous Materials, 136, pp. 721-726, (2006).
 
[50]      Ng, J., Cheung, W., McKay, G., "Equilibrium studies of the sorption of Cu (II) ions onto chitosan", Journal of Colloid and Interface Science, 255, pp. 64-74, (2002).
[51]      Millward, A. R., "Adsorption of environmentally significant gases (hydrogen, carbon dioxide, hydrogen sulfide, methane) in metal-organic frameworks", University of Michigan, (2006).