بررسی استخراج پروتئین از ریزجلبک با استفاده از روش‌های مختلف پیش‌تیمار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند

2 مرکز تحقیقات بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز

چکیده

ریزجلبک­ها بهدلیل داشتن پروتئینِ با ارزش غذایی بالا، سرعت رشد سریع و توانایی زندهماندن در شرایط سخت، جزء امیدوارکنندۀ منابع پروتئین هستند. در این تحقیق، ابتدا کشت گونههای مختلف و نامعین ریزجلبک در فتوبیو راکتورهای صفحهای تخت انجام شد و برای اولینبار، فرایند استخراج پروتئین از زیستتودۀ ریزجلبک مختلط با استفاده از روش­های مختلف پیشتیمار از قبیل اتولیز، آبکافت با اسید و باز، آبکافت به‌وسیلۀ امواج فراصوت و ترکیب آن­ها بررسی شد. در پیش­تیمار اسیدی و بازی با استفاده از محلولهایی با غلظت­های مختلف و در مدت زمان­های متفاوت، بالاترین درصد استخراج پروتئین(در دمای 121 و مدت زمان 30 دقیقه) بهترتیب 83 و 93 درصد گزارش شد که نشان داد که استفاده از قلیا، بازدهی بالاتری در استخراج پروتئین دارد. همچنین، با استفاده از روش اتولیز و امواج فراصوت، بالاترین بازده استخراج بهترتیب 60 و 39 درصد از پروتئین کل بود. در این مطالعه، برای نخستین بار از روش اتولیز بههمراه انجماد سریع برای استخراج پروتئین از ریزجلبک استفاده شد و بر اساس نتایج به‌دستآمده، بازدهی فرایند اتولیز بهمیزان 3 تا 10 درصد افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Protein Extraction from Microalgae Using Different Pretreatment Methods

نویسندگان [English]

  • M. Zamani 1
  • H. Shokrkar 2
  • S. Ebrahimi 2
1 Sahand University of Technology
2 Sahand University of Technology
چکیده [English]

Microalgae are promising sources of protein due to their high nutritional value, rapid growth rate and ability to survive in harsh conditions. In this study, first, different and indeterminate species of microalgae were cultured in flat plate photobioreactors and for the first time, the process of protein extraction from mixed microalgae biomass using various pretreatment methods such as autolysis, hydrolysis with acidic and alkaline methods, ultrasound and their composition was investigated. In acidic and alkaline pretreatment using solutions with different concentrations and at different times, the highest percentage of protein extraction (at 121 temperature and duration of 30 minutes) was 83% and 93%, respectively, which showed that the use of alkali was more efficient in protein extraction. Also, using autolysis and ultrasound methods, the highest extraction efficiencies were 60% and 39% of total protein, respectively. In this study, an autolysis with freezing method was used for the first time and based on the results, the efficiency of the autolysis process increased by 3 to 10%.
 

کلیدواژه‌ها [English]

  • Autolysis
  • Extraction
  • Ultrasound
  • Protein
  • Microalgae

 

[1]        Mata, T. M., Martins, A. A., Caetano, N. S., "Microalgae for biodiesel production and other applications: a review", Renewable and sustainable energy reviews, 14(1), pp. 217-232, (2010).
[2]        Brennan, L., Owende, P., "Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and
co-products", Renewable and sustainable energy reviews, 14(2), pp. 557-577, (2010).
[3]        Pulz, O., Scheibenbogen, K., "Photobioreactors: Design and performance with respect to light energy input. In: Bioprocess and Algae Reactor Technology, Apoptosis”. Springer Berlin Heidelberg, pp. 123–52, (2007).
[4]        Shokrkar, H., Abbasabadi, M., Ebrahimi, S.,
"Model-based evaluation of continuous bioethanol production plant", Biofuels, Bioproducts and Biorefining, 13(1), pp. 11-20, (2019).
[5]        Shokrkar, H., Ebrahimi, S., Zamani, M., "Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis” Fuel, 228, pp. 245-258, (2018).
[6]        Colman, B., Rotatore, C., "Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ", pp. 919-934, (1995).
[7]        Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., Juan, J. C., "Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae", Bioresour Technol, pp. 190-201, (2015).
[8]        Tabernero, A., Martín del Valle, E. M., Galán, M. A., "Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics", Biochem Eng J, pp. 104-115, (2012).
[9]        Chisti, Y., "Biodiesel from microalgae", Biotechnology advances, 25(3), pp. 294-306, (2007).
[10]      Carneiro, M., Pradelle, F., "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)", Renewable and Sustainable Energy Reviews, 73, pp. 324-331, (2017).
[11]      Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., "Biodiesel production from oleaginous microorganisms", Renewable energy, 34(1), pp. 1-5 ,(2009).
[12]      Gao, M. T.,Shimamura, T., Ishida, N., Takahashi, H., "Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel” Journal of bioscience and bioengineering, 114(3), pp. 330-333, (2012).
[13]      Norambuena, F., Hermon, K., Skrzypczyk, V., Emery, J. A., Sharon, Y., Beard, A., "Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon", Pond DW, PLoS One,
pp. 498-506, (2015).
[14]      Muto, M., Nojima, D., Yue, L. H. K., "Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities”, J of bioscience, pp. 124-132, (2017).
[15]      Tran, D. T., Chen, C. L., Chang, J. S., "Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using” Bioresource technology, 135, pp. 213-231, (2013).
[16]      Roy, S. S., Pal, R., Microalgae in Aquaculture: "A Review with Special References to Nutritional Value and Fish Dietetics” In Proceedings of the Zoological Society, Vol. 68, No. 1, pp. 1-8, (2015).
[17]      Manirafasha, E., Ndikubwimana, T., Zeng. X., Lu, Y., Jing, K., "Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J pp: 282-296, (2016).
 
 
 
 
[18]      Chen, C .Y., Zhao, X. Q.,Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., "Microalgae-based carbohydrates for biofuel production", Biochem Eng J., pp. 1-10, (2013).
[19]      Sambusiti, C., Bellucci, M., "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review, Renewable and Sustainable Energy Reviews, 44, pp. 20-36, (2015).
[20]      Vanthoor- Koopmans, M., Wijffels, R. H., Barbosa, M. J., Eppink, M. H., "Biorefinery of microalgae for food and fuel", Bioresour Technol, pp. 142-149, (2013).
[21]      Spolaore, P., Joannis- Cassan, C., Duran, E., Isambert, A., "Commercial applications of microalgae", J Biosci Bioeng, pp. 87–96, (2006).
[22]      Solana, M., Rizza, C., "Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus”, Chlorella. The Journal of Supercritical Fluids, 92, pp. 311-318, (2014).
[23]      Mooij, P., Stouten, G., "Survival of the fattest", Energy & Environmental Science, 6(12),
pp. 3404-3406, (2013).
[24]      Ciudad, G., Rubilar, O., Azócar, L., Toro, C., Cea, M., Torres, Á., "Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption", J Biosci Bioeng. pp. 75-80, (2014).
[25]      Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia- Gonzalez, L., Elst, K., Wijffels, R. H., "Cell disruption for microalgae biorefineries", Biotechnol Adv, pp. 243-260 (2015).
[26]      Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., "Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods", Algal Res, 3, pp. 61-65 (2014).
[27]      Piasecka, A., Krzemiñska, I., Tys, J., "Physical methods of microalgal biomass pretreatment", International Agrophysics, 28(3). pp. 341–8, (2014).
[28]      Safi, C., Frances, C., Ursu, AV., Laroche, C., Pouzet, C.,Vaca- Garcia, C., "Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase", Algal research, 8, pp. 61-68 ,(2015).
[29]      Foley, P. M., Beach, E. S., Zimmerman, J. B., "Algae as a source of renewable chemicals: opportunities and challenges", Green Chemistry, 13(6), pp. 1399-1405. 2011).
[30]    شکرکار، هـ .، "بررسی استخراج کربوهیدراتها از ریزجلبک جهت تولید اتانول"، پایان‌نامه دکتری، دانشگاه صنعتی سهند (2017).
[31]      Postma, P., Miron, T., Olivieri, G., "Mild disintegration of the green microalgae Chlorella vulgaris using bead milling", Bioresource technology, 184, pp. 297-304, (2015).
[32]      Waterborg, J. H., "The Lowry Method for Protein Quantitation", in The protein protocols handbook, pp.7-10, Humana Press, Totowa, NJ, (2009).
[33]      Mendes- Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., Morais, R., "Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability", J Appl Phycol, 13(1), pp. 19-24, (2001).
[34]      Show, K., Lee, D., Tay, J., Lee, T., "Microalgal drying and cell disruption–recent advances", Elsevier , Bioresource technology, 184, pp. 258-266, (2015).
[35]      Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., Bux, F., "Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production", Fuel,128, pp. 46-52 (2014).
[36]      Parimi, N. S., Singh, M., Kastner, J.R., Das, K. C., Forsberg, L. S., Azadi, P., "Optimization of protein extraction from Spirulina platensis to generate a potential co-product and a biofuel feedstock with reduced nitrogen content", Front Energy Res, 3,
pp. 256-263 (2015).
[37]      Araujo, G., Matos, L., "Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method", Ultrasonics sonochemistry, 20(1), pp. 95-98 (2013).
[38]      Kim, J., Yoo, G., Kim, K., Lee, H., Lim, J., Kim, W., "Methods of downstream processing for the production of biodiesel from microalgae", Biotechnology advances, 31(6), pp. 862–76 (2013).
[39]      Costa, G., Plazanet, I., "Plant cell wall, a challenge for its characterisation", Plant cell wall, pp. 1-6 (2016).
[40]      Boye, J. I., Barbana, C., "Protein Processing in Food and Bioproduct Manufacturing and Techniques for Analysis", Food and industrial bioproducts and bioprocessing, 10, pp. 85-113 (2015).
[41]      Gerde, J. A; Wang, T., Yao, L., Jung, S., Johnson, L. A., Lamsal, B., "Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass", Algal Res, 2(2), pp. 145-153 (2013).
[42]      Kadam, S. U., Álvarez, C., Tiwari, B. K., O’Donnell, C. P., "Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum", Food Res Int,99, pp. 1021-7 (2017).
[43] Wang, D., Li, Y., Hu, X., Su, W., Zhong, M., "Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans", International journal of molecular sciences, 16(4), pp. 7707–22 (2015).