مروری بر تأثیر نانوصفحات رس بر خواص روانه‌شناختی پایا و پویاشناسی نانوچندسازه‌های بسپاری

نویسندگان

دانشگاه تبریز

چکیده

نانوچندسازه­های بسپاری از متنوع­ترین مواد امروزی و دارای خواص بی‌همتایی هستند، ولی با این‌حال مواد بسپاری نمی­توانند به‌تنهایی، دامنۀ گسترده­ای از خواص مطلوب روانه‌شناختی را از خود نشان‌دهند، از این‌رو برای توسعۀ کارایی بالای این نانوچندسازه­ها، به امتزاج این چندسازه­ها، با موادی مانند نانوصفحات رس که یکی از تجاری­ترین و مؤثرترین نانوصفحات رایج است، نیازمندیم. بنابراین در این‌تحقیق، مروری بر مطالعه‌های پیشین انجام‌شده برای بررسی اثر نانو صفحات رس در نانوچندسازۀ پلی­پروپیلن/ رس بر خواص روانه‌شناختی آمیزه‌های امتزاج­ناپذیر بسپاری انجام شده‌است. براساس بررسی­های ما، مشخص شد که برای برهمکنش­های ضعیف چندسازه­های بسپار/ نانو صفحات رس و در سامانه­‌هایی که پخش ذرات نانو در آن­ها پایداری کمی دارد، افزودن سیلیکات لایه­ای کمترین تأثیر را بر رفتار روانه‌شناختی نانوچندسازه دارد. برای برهمکنش­های قوی چندسازه‌های بسپار/صفحات رس، یک انتقال از رفتار روانه‌شناختی مایع‌گونه به رفتار جامدگونه در اندازه‌های نسبتاً کم از سیلیکات (2-1 درصد وزنی) دیده می­شود. از طرفی، براساس بررسی­های انجام‌شده، مشخص شده‌است که نانوصفحات رس با افزایش گران‌روی و کشسانی ماتریس بسپار به گسترش ریخت‌شناسی فازی کمک می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

A Review on Effect of Clay Nanoparticles on the Stable and Dynamics Rheological Properties of Polymeric Nanocomposites

نویسندگان [English]

  • S. Zeinali Heris
  • M. Norouzi Gaz-koh
University of Tabriz
چکیده [English]

Polymeric nanocomposites are one of the most diverse today’s materials and have unique properties, but a polymer alone is not capable of exhibiting a wide range of desirable rheological properties. Therefore, for development and high efficiency of these nanocomposites, the need to merge these composites with materials such as clay nanoparticles that is one of the most commercial and effective nanoparticles. So, in this study, a review on previous researches has been performed to investigate the effect of clay nanoparticles on polypropylene/clay nanocomposite rheological properties of immiscible polymeric mixtures. Based on the studies, it was found that for the poor interactions of polymer/clay nanoparticles composites and in systems where the dispersion of nanoparticles was less stable, the addition of layer silicates had minimal effect on the rheological behavior of the nanocomposites. For the strong interactions of polymer/clay composites, a transition from rheological behavior of liquid species to solid species behavior is observed at relatively low amounts of silicate (1–2 wt.%). Studies show that clay nanoparticles contribute to the development of fuzzy morphology by increasing the viscosity and elasticity of the polymer matrix.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Clay Nanoparticles
  • Polypropylene
  • Rheological Properties
  • Elastic Modulus
[1]          Weder, C., "Functional polymer blends and nanocomposites", Chimia, 63(11): pp. 758- 763, (2009).
[2]          Calcagno, C. I. W., Mariani, C. M., Teixeria, S. R., Mauler R. S., "The role of the MMT on the morphology and mechanical properties of the PP/PET blends", Comp Sci and Tech, 68: pp. 2193-2200, (2008).
[3]          Utracki, L. A., "Clay-containing polymeric nanocomposites and their properties", IEEE Electr Insul M, 26(4): pp. 6-15, (2010).
[4]          Gahleitner, M., Kretzschmar, B., Van Vliet, G., Devaux, J., Pospiech, D., Bernreitner K., Ingolic E., "Rheology/morphology interactions in polypropylene/polyamide-6 anocomposites", Rheol Acta, 45: pp. 322-330, (2006).
[5]          Barton, C. D., Karathanasis, A. D., "Clay minerals", In: Encyclopedia of soil science, Lal, R. (Ed), Taylor and Francis Press, (2016).
[6]          Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H. P. S., Salema, A. A., Inuwa, I., "Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites”, Mater Des, 46: pp. 391–410, (2013).
[7]          Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., "Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields", Nanomaterials, 7(74): pp. 1-47, (2017).
[8]          Potschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., Lellinger, D., "Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites", Polymer, 45: pp. 8863–8870, (2004).
[9]          Cassagnau, P., "Melt rheology of organoclay and fumed silica nanocomposites", Polymer, 49:
pp. 2183–2196, (2008).
[10]       Rytwo, G. J. M., "Clay minerals as an ancient nanotechnology: Historical uses of clay organic interactions, and future possible perspectives", Macla, 9: pp. 15–17, (2008).
[11]       Villmow, T., Pegel, S., Potschke, P., Wagenknecht, U., "Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes", Compos Sci Technol", 68: pp. 777–789, (2008
[12]       Chandra, A., Kramschuster, A. J., Hu, X., Turng, L. S., "Effect of injection molding parameters on the electrical conductivity of polycarbonate/carbon nanotube nanocomposites”, In Proceedings of the Annual Technical Conference (ANTEC), Cincinnati, OH, USA, 6–11 May, pp. 2171–2175, (2007).
[13]       Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., White, J. L., Cho, J. W., Paul, D. R., "Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites", Polymer, 42:
pp. 9513–9522, (2001).
[14]       Ge, T., Kalathi, J. T., Halverson, J. D., Grest, G. S., Rubinstein, M., "Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers", Macromolecules, 50: pp. 1749–1754, (2017).
[15]       Mark, J. E., Jiang, C. Y., Tang, M. Y., "Simultaneous curing and filling of elastomers". Macromolecules, 17: pp. 2613–2616, (1984).
[16]       Wen, J. Y., Wilkes, G. L., "Organic/inorganic hybrid network materials by the sol-gel approach”, Chem Mater, 8: pp. 1667–1681, (1996).
[17]       Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S., Bretas, R. E. S., "Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites”. Eur Polym J. 44: pp. 1346–1357, (2008).
[18]       Ianniruberto, G., "Introduction on Polymer Rheology", In: Reference module in chemistry, molecular sciences and chemical engineering, Reedijk, J. (Eds,), Elsevier Press, (2015).
[19]       Zare, Y., Rhee, K. Y., "Prediction of loss factor (tan δ) for polymer nanocomposites as a function of yield tress, relaxation time and the width of transition region between Newtonian and power-law behaviors", J Mech Behav Biomed Mater, 96:
pp. 136-143, (2019).
[20]       Khounvilay, K., Sittikijyothin, W., "Rheological behaviour of tamarind seed gum in aqueous solutions", Food Hydrocoll, 26: pp. 334 – 338, (2012).
[21]       Li, J., Zhou, C., Wang. G., Zhao. D., "Study on rheological behavior of polypropylene/clay nanocomposites", J Appl Polym Sci, 89(13):
pp. 3609–3617, (2003).
[22]       Abu-Jdayil, B., Al Omari, S. B., Taher, H., Al-Nuaimi, L., "Rheological characterization of clay-polyester composites", Procedia Eng, 10:
pp. 716- 721, (2011).
[23]       Mansor, M. R., Mustafa, Z., Fadzullah, A. H., Omar, G., Salim, M. A., Akop, M. Z., "Recent Advances in Polyethylene-Based Biocomposites", In: Sapuan, S. M., Ismail, H., Zainudinm, E. S. (eds), Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications, Woodhead Publishing. pp. 71-96, (2018).
[24]       Kádár, R., Abbasi, M., Figuli, R., Rigdahl, M., Wilhelm, M., "Linear and nonlinear rheology combined with dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications”, Nanomaterials, 7(23): pp. 1-20, (2017).
[25]       Li, Y., Han, Ch., Zhang, X., Bian, J., Han, L., "Rheology, mechanical properties, and biodegradation of poly(ε-caprolactone)/silica nanocomposites". Polym Compos, 34(10):
pp. 1620-1628, (2013).
[26]       Xue, M. L., Li, P., "Phase morphology and clay distribution of poly (trimethylene terephthalate)/ polypropylene/montmorillonite nanocomposites", J Appl Polym Sci, 113(6): pp. 3883-3890, (2009).
[27]       Entezam, M., Khonakdar, H.A., Yousefi, A. A., "Dynamic and transient shear start-up flow experiments for analyzing nanoclay localization in PP/PET blends: correlation with microstructure", Macromol Mater Eng, 298(1): pp. 113-126, (2012).
[28]       Ville, J., Médéric, P., Huitric, J., Aubry, T., "Structural and rheological investigation of nterphase in polyethylene/polyamide/nanoclay ternary blends", Polymer, 53(8): pp. 1733- 1740, (2012).
 
[29]       Lei, S. G., Ton-That, M. T., Hoa, S. V., "Effect of clay types on the processing and properties of polypropylene nanocomposites". Compos Sci and Technol, 66: pp. 1274–1279, (2006).
[30]       Liu, W., Liu, B., Wang, X., "Morphology, rheological properties, and crystallization behavior of polypropylene/clay nanocomposites", Int J Polym Mater, 62: pp. 164–171, (2013).
[31]       Solomon, M. J., Almusallam,A. S., Seefeldt,K. F., Somwangthanaroj, A., Varadan, P., "Rheology of Polypropylene/Clay Hybrid Materials", Macromolecules, 34(6): pp. 1864-1872, (2001).
[32]       Gu, S., Ren, J., Wang, Q., "Rheology of poly(propylene)/clay nanocomposites", J Appl Polym Sci, 91: pp. 2427–2434, (2004).
[33]       Sundararaj, U., Macosko, C.W., "Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization", Macromolecules, 28(8): pp. 2647-2657, (1995).