مطالعۀ فرایندهای مختلف بازیافت گوگرد، بررسی برتری‌ها و کاستی‌های هرکدام برای انتخاب فرایند مناسب

نویسندگان

پژوهشگاه صنعت نفت

چکیده

امروزه با توجهبه ملاحظات زیستمحیطی، لزوم کاهش گسترش گازهای آلاینده به‌ویژه سولفید هیدروژن بیش از پیش احساس می‌شود؛ بدین دلیل انتخاب فرایند مناسب برای تبدیل گازهای اسیدی پالایشگاه‌ها به گوگرد عنصری از اهمیت بالایی برخوردار است. در این مقاله فناوری‌‌های مختلف بازیافت گوگرد از گاز اسیدی مطالعه و شرایط مختلف عملیاتی، تفاوت‌ها، برتری‌ها و کاستی‌های هر کدام بررسی شدهاست. انتخاب فناوری‌ مناسب به ظرفیت، شرایط خوراک، میزان بازیافت مورد نیاز، شرایط عملیاتی و مسائل اقتصادی وابسته است. نتایج به‌دست‌آمده از مطالعۀ انجام شده نشان می‌دهد که در ظرفیت‌های بالا، برای رسیدن به بازیافت گوگرد در حدود 97%، بهترین گزینه فرایند کلاوس اصلاح شده است. به‌منظورافزایش بازیابی، لازم است از فرایند‌های پالایش گاز پسماند در ادامۀ فرایند کلاوس استفاده شود. برخی از این فناوری‌های افزایش بازیافت عبارتند از: فرایندهای زیر نقطۀ شبنم، اکسایش مستقیم، تبدیل اجزاء گوگردی به H2S و جذب آن با محلول آمین گزینش‌پذیر و تبدیل اجزاء گوگردی به SO2 و جذب آن با حلال مناسب. مطالعۀ پیش رو نشان می‌دهد که برای دست‌یابی به بازیافت بالاتر از 9/99%، فرایند جذب انتخابی سولفید هیدروژن با محلول آمین گزینش‌پذیر و بازگرداندن H2S
جدا شده به ابتدای فرایند، مناسب‌ترین گزینه است.

کلیدواژه‌ها


عنوان مقاله [English]

Different Sulfur Recovery Options; Applicability,Advantages and Disadvantages

نویسندگان [English]

  • H. Ganji
  • M. Sadi
Research Institute of Petroleum Industry
چکیده [English]

Environmental regulations have become more stringent on acid gas emissions to atmosphere. So, selecting the right process for sulfur recovery from refinery acid gases is very important. In this manuscript, different technologies for sulfur recovery have been reviewed and their advantages and disadvantages have been investigated. Selecting suitable technology depends on different parameters such as unit capacity, the feed composition, required recovery, operating condition and economy. The results of this study show that to obtain sulfur recovery about 97% at refineries with high capacity, the modified Claus process is the best choice. To achieve more recovery, one of the tail gas treatment technologies should be applied after Claus process. These technologies include sub-dew point, direct oxidation, converting sulfur species to H2S and absorb with selective amine, converting sulfur species to SO2 and absorb with suitable solvent. This study revealed that to increase sulfur recovery to more than 99.9%, the best choice is selective absorption of hydrogen sulfide with amine and recycling it to the Claus process.

کلیدواژه‌ها [English]

  • Sulfur Recovery
  • Tail Gas Treatment
  • Efficiency
  • Technologies

 

[1]        Goar, B. G., Nasato, E., "Large Plant Sulfur Recovery Processes Stress Efficiency", Oil & Gas Journal, 92, pp. 61-67, (1994).
[2]        Goar, B. G., "Sulfur Recovery Technology", American Institute of Chemical Engineers Spring National Meeting, New Orleans, Louisiana, 6th April, (1986).
[3]        Monnery, W. D., Svrcek, W. Y., Behie, L. A., "Modelling the Modified Claus Process Reaction Furnace and the Implications on Plant Design and Recovery", The Canadian Journal of Chemical Engineering, 71, pp. 711-724, (1993).
[4]        Converting Hydrogen Sulfide by the Claus Process. http://www.nelliott.demon.co.uk/company/claus.html (2015).
[5]        Sassi, M., Gupta, A. K., "Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC) Technology", American Journal of Environmental Sciences, 4, pp. 502-511, (2008).
[6]        Elsner, M. P., Menge, M., Müller, C., Agar, D. W., "The Claus Process: Teaching an Old Dog New Tricks", Catalysis Today, 79–80, pp. 487-494, (2003).
[7]        Eow, J. S., "Recovery of Sulfur from Sour Acid Gas: A Review of the Technology", Environmental Progress, 21, pp. 143–162, (2002).
[8]        Gas Processors Suppliers Association (GPSA), Engineering Data Book, 12th Edition, GPSA Tulsa, Oklahoma, Section 22, (1987).
[9]        Vatachi, N., Popa, V., Modified Claus Process Applied to Natural Gas for Sulfur Recovery, Dunrea de Jos University of Galati, Romania, ISSN 1221- 4558, pp. 1024-1029, (2009).
[10]      Paskall, H. G., Sames J. A., Sulfur Recovery, 8th Edition, Sulfur Experts, pp. 120-125, (2003)
[11]      Hydrocarbon Processing, Gas Processes Handbook, (2019).
[12]      Rameshni, M., Street. R., "PROClaus: The New Standard for Claus Performance", Sulfur Recovery Symposium, Canmore, Alberta, 30th April 30th – 4th May, (2001).
[13]      Oxygen Enrichment and Sulfur Recovery Featuring COPE (Claus Oxygen-based Process Expansion), Available from: https://www.goarallison.com/cope. htm.
[14]      Oxygen Enrichment in Claus Plants, Reducing Potential Bottlenecks in Refineries,  Available from: https://www.boconline.co.uk/en/processes/petrochemical-processing/claus-rocess/index.html.
[15]      Rameshni, M., "Cost Effective Options to Expand SRU Capacity Using Oxygen", Sulfur Recovery Symposium, Alberta, Calgary, 6th – 10th May, (2006).
[16]      McIntyre. G., Lyddon, L., "Claus Sulphur Recovery Options”, Petroleum Technology Quarterly Spring, pp. 57-61, (1997).
[17]      Epping, A., Lebel, M., Castel, J., Jacques, M., "Refinery SRU’s Tail Gas Handling Options", 2nd Middle East Sulphur Plant Operations Network Forum, Abu Dhabi, 18th-20th October, (2015).
[18]      Cover, A. E., Hubbard, D. A., Jain, S. K., Shah, K. V., Koneru, P. B., Wong, E. W., Review of Selected Sulfur Recovery Processes for SNG Production, Gas Research Institute, Houston, Texas, pp.410-425, (1985).
[19]      Taraphdar, T., "Sulphur Recovery Technologies –Fundamentals & Current Status", INDIA Technip Seminar, June, (2013).
[20]      Lallemand, F., Lecomte, F., Streicher, C., "Highly Sour Gas Processing: H2S Bulk Removal with the Sprex Process", International Petroleum Technology Conference, doi: 10.2523/IPTC-10581-MS, (2005).
[21]      Sun, S., Zhang, D., Li, C., Wang, Y., "DFT Study on the Adsorption and Dissociation of H2S on CuO (111) Surface", RSC Advances, 5, pp. 21806–21811, (2015).
 
[22]      Jia M.Y., Xu B., Deng K., He S.G., Ge M.F., Consecutive Oxygen for Sulfur Exchange Reactions between Vanadium Oxide Cluster Anions and Hydrogen Sulfide, The Journal of Physical Chemistry A., 118, pp. 8106–8114, (2014).
[23]      Pahalagedara, L. R., Poyraz, A. S., Song, W., Kuo, C. H., Pahalagedara, M. N., Meng, Y. T., Suib, S. L., "Low Temperature Desulfurization of H2S: High Sorption Capacities by Mesoporous Cobalt Oxide via Increased H2S Diffusion", Chemistry of Materials, 26, pp. 6613–6621, (2014).
[24]      Bagheri, Z., Moradi, M., "DFT Study on the Adsorption and Dissociation of Hydrogen Sulfide on MgO Nanotube", Journal of Structural Chemistry, 25, pp. 495–501, (2014).
[25]      Hamon, L., Leclerc, H., Ghoufi, A., Oliviero, L., Travert, A., Lavalley, J. C., Devic T., Serre, C., Ferey, G., DeWeireld, G., Vimont, A., Maurin, G., "Molecular Insight into the Adsorption of H2S in the Flexible MIL-53 (Cr) and Rigid MIL-47 (V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations", The Journal of Physical Chemistry C., 115, pp. 2047–2056, (2011).
 
[26]      Petit, C., Mendoza, B., Bandosz, T. J., "Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites", ChemPhysChem, 11,
pp. 3678–3684 (2010).
[27]      Barea, E., Montoro, C., Navarro, J. A. R., "Toxic Gas Removal, Metal Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapors", Chemical Society Reviews, 43, pp. 5419–5430, (2014).
[28]      Strickland, J. F., Quinlan, M., Velasquez, D., Leppin, D., Meyer, H., Tail Gas Clean-up Processes: Capabilities and Relative Costs, Kellogg Brown & Root, GTI E&P Services, GTI Gas Processing Technology Services USA, Report Number:GRI-00/0152, (2000).