تبدیل فتوکاتالیستی گاز کربن‌دی‌اکسید به مواد شیمیایی با ارزش و سوخت‌های هیدروکربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

امروزه به دلیل افزایش مشکلات ناشی از پدیده گرمایش جهانی، روش‌های زیادی به وسیله پژوهشگران برای کاهش گاز آلاینده کربن‌دی‌اکسید ارائه شده است. فرایندهای جذب و ذخیره‌سازی کربن‌دی‌اکسید (CCS) و یا تبدیل کربن‌دی‌اکسید به محصولات مفید از این روش‌ها است. در این میان فرایندهای تبدیل فتوکاتالیستی CO2 به مواد شیمیایی با ارزش و سوخت‌های هیدروکربنی علاوه بر کاستن نگرانی‌ها برای انباشت این گاز آلاینده، مسیر تازه‌ای را برای تولید ترکیبات مشتق از گاز کربن‌دی‌اکسید ایجاد کرده است. در این مقاله مروری، نخست به ‌طور خلاصه فناوری‌های تبدیل کربن‌دی‌اکسید، و سپس اصول تبدیل فتوکاتالیستی آن بررسی شده است. هدف اصلی این مقاله بررسی اثر کاهنده‌ها از میان عوامل متعدد مؤثر در تبدیل فتوکاتالیستی CO2 است؛ بنابراین اثر کاهنده‌های مختلف همچون آب مایع، بخار آب و گاز هیدروژن بر میزان تبدیل کربن‌دی‌اکسید و چگونگی توزیع محصولات، بررسی شده است. نتایج این مطالعه گویای آن است که عوامل کاهنده مختلف، مسیرهای واکنش متفاوتی را طی می‌کنند و در نهایت منجر به تولید محصولات متنوع همچون متانول، متان، فرمیک اسید، فرم آلدئید و کربن مونوکسید می‌شوند. در ادامه برای ایجاد شرایط مطلوب هدایت واکنش به سمت توزیع محصول مورد نظر با بازده هرچه بیشتر، واکنش‌های انجام‌شده در حضور این سه عامل کاهنده با یکدیگر مقایسه شده است. انتخاب‌پذیری واکنش تبدیل در حضور آب مایع نسبت به متانول بیشتر است و متانول با نرخ بیشتری تولید می‌شود؛ در حالی که بیشتر محصول واکنش‌های کاهش فتوکاتالیستی کربن‌دی‌اکسید در فاز گازی و در حضور بخار آب ، گاز هیدروژن، گاز متان و کربن مونوکسید است.

کلیدواژه‌ها


عنوان مقاله [English]

Photocatalytic Conversion of Carbon Dioxide Gas to Valuable Chemicals and Hydrocarbon Fuels

نویسندگان [English]

  • S. Yazdani
  • Sh. Salem
چکیده [English]

Nowadays, due to the increasing problems caused by global warming, researchers have proposed several methods to reduce carbon dioxide emissions in the atmosphere. Among the conventional methods, the processes of Carbon Capture and Storage (CCS) and carbon dioxide conversion to useful products are great of importance. Meanwhile, photocatalytic conversion of CO2 to valuable chemicals and hydrocarbon fuels, not only reduces concerns about the accumulation of this polluting gas but also creates a new pathway for the synthesis of carbon-dioxide derived compounds. This review article at first briefly studies carbon dioxide conversion technologies and then discusses the principles of carbon dioxide photocatalytic conversion. The main purpose of this paper is to investigate the effects of reducing agents among the various factors affecting the photocatalytic conversion of CO2. Therefore, the effects of different reducing agents such as liquid water, steam, and hydrogen gas on carbon dioxide conversion and product distribution are studied. The results of this study indicate that various reducing agents cause different reaction mechanisms, and ultimately lead to the production of various products such as methanol, methane, formic acid, formaldehyde, and carbon monoxide. Next, in order to create the optimal conditions for conducting a reaction toward the desired product distribution with the highest yield, several reactions performed in the presence of these three reducing agents are compared. The selectivity of the conversion reaction is higher toward methanol in the presence of water. It means methanol is produced at a higher rate. However, the major products of photocatalytic reduction of carbon dioxide in the gas phase and in the presence of water vapor and hydrogen are methane and carbon monoxide.

کلیدواژه‌ها [English]

  • CO2 Utilization
  • Photocatalytic Conversion of CO2
  • Reducing Agents
  • TiO2
  • Hydrocarbon Fuels
  • Methanol

 

[1]      Whang, H., Lim, J., Choi, M. S., Lee, J., Lee, H., "Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals", BMC Chemical Engineering, 1-9, (2019).
[2]        Li, K., Ana, X., Parka, K., Khraisheh, M., Tanga, J., "A critical review of CO2 photoconversion: Catalysts and reactors", Catalysis Today, 224, 3-12, (2014).
 
 
 
 
[3]        Mardani, A., Streimikiene, D., Cavallaro, F., Loganathan, N., Khoshnoudi, M., "Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017", Science of the Total Environment, 649, 31–49, (2019).
[4]        Rudin, S .N .F. M., Muis, Z. A., Hashim, H., Ho, W. S., "Overview of carbon reduction, capture, utilization and storage: development of new framework", Chemical Engineering Transactions, 56, 649-654, (2017).
[5]        Leung, D. Y. C., Caramanna, G., Maroto-Valer, M. M., "An overview of current status of carbon dioxide capture and storage technologies", Renewable and Sustainable Energy Reviews, 39, 426–443, (2014).
]6[      امینی، ا.، مهری زاده، ح.، نیایی، ع.، سالاری، د.، رحیمی اقدم، ط.، " مروری بر فرایند تبدیل فوتوکاتالیستی کربن‌دی‌اکسید به متانول"، نشریه مهندسی شیمی ایران، سال پانزدهم، شماره 86، صص 42 تا 52، (1395).
[7]        Ganesh, I., "Conversion of Carbon Dioxide to Methanol Using Solar Energy— a Brief Review", Materials Sciences and Applications, 2, 1407-1415, (2011).
[8]        Roy, S. C., Varghese, O. K., Paulose, M., Grimes, C. A., "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons", ACS Nano, 4, 1259-1278, (2010).
[9]        Tahir, M., Amin, N. A. S., "Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels", Energy Conversion and Management, 76, 194-214, (2013).
[10]      Zhang, Q., Lin, Ch. F., Jing, Y. H., Chang, Ch. T., "Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2", Journal of the Air & Waste Management Association, 64 (5), 578-585, (2014).
[11]      Tahir, M., "Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO2 nanocatalyst", Journal of Cleaner Production, 170, 242-250, (2018).
[12]      Zhao, H., Lianjun, L., Jean, M., Li, A., Li, Y., "Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels", Journal of Materials Chemistry A, 1, 8209-8216, (2013).
[13]      Huang, Ch., Tan, Ch., "A Review: CO2 Utilization", Aerosol and Air Quality Research, 14, 480-499, (2014).
[14]      Jiang, Z., Xiao, T., Kuznetsov, V. L., Edwards, P. P., "Turning carbon dioxide into fuel", Phil. Trans. R. Soc, 368, 3343-3364, (2010).
[15]      Song, Ch., "CO2 Conversion and Utilization: An Overview", American Chemical Society: Washington, DC, Chapter 1, 2-30, (2002).
[16]      Tu, W., Zhou, Y., Zou, Zh., "Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects", Adv. Mater, 0, 4607-4626, (2014).
[17]      Neațu, Ș., Maciá-Agulló, J., Garcia, H., "Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts", International Journal of Molecular Sciences, 15, 5246-5262, (2014).
[18]      Koci, K., Obalova, L., Solcova, O., "Kinetic study of photocatalytic reduction of CO2 over TiO2", Chemical and process engineering, 31, 395-407, (2010).
[19]      Karamian, E., Sharifnia, Sh., "On the general mechanism of photocatalytic reduction of CO2", Journal of CO2 Utilization, 16, 194-203, (2016).
[20]      Tahir, M., Amin, N. A. S., "Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges", Renewable and Sustainable Energy Reviews, 25, 560-579, (2013).
[21]      Nahar, S., Zain, M. F .M., Kadhum, A. A. H., Hasan, H. A., Hasan, M. R., "Advances in Photocatalytic CO2 Reduction with Water: A Review", Materials, 10, 629, (2017).
[22]      Hamidah, A., Zahira, Y., Maksudur, R., "CeO2-TiO2 for photoreduction of CO2 to methanol under visible light: effect of ceria loading", Malaysian Journal of Analytical Sciences, 21 (1), 166-172, (2017).
[23]      Khan, M. M. R., Uddin, M. R., Abdullah, H., Karim, K. M. R., Yousef, A., Cheng, Ch., Ong, H. R., "Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light", International Journal of Chemical and Molecular Engineering, 10 (10), (2016).
[24]      Uddin, M. R., Khan, M. M. R., Wasikur, R., Cheng, Ch., Yousef, A., "Photocatalytic conversion of CO2 to methanol: significant enhancement of the methanol yield over Bi2S3/CdS photocatalyst", International Journal of engineering and science, 3 (1), (2015).
[25]      Wang, Q., Wu, W., Chen, J., Chu, G., Ma, K., Zou, H., "Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions", Colloids Surf Physicochem Eng Asp, 409,118-25, (2012).
[26]      Slamet, H. W. N., Purnama, E., Riyani, K., Gunlazuardi, J., "Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts", World Applied Sciences Journal, 6 (1), 112-122, (2009).
[27]      Kaneco, S., Kurimoto, H., Ohta, K., Takayuki, M., Saji, A., "Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium", Journal of Photochemistry and Photobiology A: Chemistry, 109, 59-63, (1997).
[28]      Scherrer, P. H., Wilox, J. M., Kotov, V. A., Severny, A. B., Tsap, T. T., "Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor pwders", Nature, 277 (22), 637-638, (1979).
[29]      Lingampalli, S. R., Ayoub, M. M., Rao, C. N. R., "Recent Progress in the Photocatalytic Reduction of Carbon Dioxide", Journal of American chemical society, 2, 2740-2748, (2017).
[30]      Wang, W., An, W. J., Ramalinga, B., Mukherjee, S., Niedzwiedzki, D. M., Gangopadhyay, Sh., Biswas, B., "Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals", Journal of American chemical society, 134, 11276-11281, (2012).
[31]      Iisuka, K., Wato, T., Miseki, Y., Saito, K., Kudo, A., "Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent", Journal of American chemical society, 133, 20863-20868, (2011).
[32]      Liu, Q., Zhou, Y., Kou, J., Chen, X., Tian, Zh., Gao, J., Yan, Sh., Zou, Zh., "High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel", Journal of American chemical society, 132, 14385-14387, (2010).
 
[33]      Tan, S. S., Zou, L., Hu, E., "Photosynthesis of hydrogen and methane as key components for clean energy system", Science and Technology of Advanced Materials, 8, 89-92, (2007).
[34]      Tahir, B., Tahir, M., Amin, N. A. S., "Photocatalytic CO2 Reduction to CO over Fe-loaded TiO2/Nanoclay Photocatalyst", The Italian Association of Chemical Engineering, 56, 1111-1116, (2017).
[35]      Kawamura, Sh., Ahmed, N., Carja, G., Izumi, Y., "Photocatalytic Conversion of Carbon Dioxide Using Zn–Cu–Ga Layered Double Hydroxides Assembled with Cu Phthalocyanine: Cu in Contact with Gaseous Reactant is needed for Methanol Generation", Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, 70 (5), 841-852, (2015).
[36]      Kawamura, Sh., Puscasu, M. C., Yoshida, Y., Izumi, Y., Carja, G., "Tailoring assemblies of plasmonic silver/gold and zinc–galliumlayered double hydroxides for photocatalytic conversion of carbondioxide using UV–visible light", Applied Catalysis A: General, 504, 238-247, (2015).
[37]      Ahmed, N., Shibata, Y., Taniguchi, T., Izumi, Y., "Photocatalytic conversion of carbon dioxide into methanol using zinc–copper–M (III) (M = aluminum, gallium) layered double hydroxides", Journal of Catalysis, 279, 123-135, (2011).
[38]      Lo, Ch., Hung, Ch., Yuan, Ch., Wu, Y., "Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor", Solar Energy Materials & Solar Cells, 91, 1765-1774, (2007).