کاربرد گرافن برای تولید انرژی پاک

نوع مقاله : مقاله مروری

نویسندگان

چکیده

رشد روزافزون مصرف سوخت‌های فسیلی و محدود بودن آن و نگرانی‌های زیست‌محیطی ناشی از آن، باعث شده پژوهش‌های گسترده‌ای برای جایگزینی منابع جدید و پاک انرژی انجام شود؛ در سال‌های اخیر پژوهشگران به پیل‌های سوختی، سلول‌های خورشیدی، باتری‌های لیتیومی و زیست‌توده توجه بسیاری کرده‌اند. هرچند این روش‌ها معایبی دارد اما حضور نانوفناوری، تأثیر قابل توجهی در از میان بردن نقایص آن‌ها داشته است. گرافن به عنوان یک نانوساختار کربنی دوبعدی که در آن اتم‌های کربن به صورت شبکه شش‌ضلعی با پیوندهای کووالانسی کنار یکدیگر قرار گرفته‌، به دلیل ویژگی‌های منحصربه فرد الکتریکی، حرارتی، شیمیایی، مکانیکی و مساحت سطح بالا و چگالی کم، اثر شگرفی در بهبود کارکرد پیل‌های سوختی، سلول‌های خورشیدی، باتری‌های لیتیومی و زیست‌توده داشته است. به علت اهمیت این موضوع، در این مقاله بر گرافن و کاربردهای آن در انرژی‌های پاک پرداخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Graphene for Producing of Clean Energy

نویسندگان [English]

  • M. Daraee
  • S. Sadeghhassani
  • L. Samiee
چکیده [English]

The increasing consumption of fossil fuels and limited resources and the environmental problems cause to carry out extensive research on the replacement of new and clean energy resources. In recent years, researchers have focused on fuel cells, solar cells, lithium batteries and biomass as a clean energy reserves. Although these methods have disadvantages but the using of nanotechnology lead to solve significant drawback of these techniques. Graphene, as a carbon nanostructure, is a two-dimensional substance with hexagonal network and covalent bonds have unique properties including high electrical, mechanical, thermal, chemical, surface area and low density. These wonderful properties lead to graphene is considered as a good candidate in fuel cell, solar cell, ion battery and bio mass. Due to the importance of this issue, this paper reviews the graphene and its applications in clean energies.

کلیدواژه‌ها [English]

  • Graphene
  • Clean Energy
  • Fuel Cells
  • Solar Cells
  • Lithium Batteries
  • Biomass

 

[1]       Geim, A. K., Novoselov, K. S., "The rise of graphene Nat Mater", 6: 183-191 (2007).
[2]       Sadegh Hassani, S., Samiee, L., Ghasemy, E., Rashidi, A. M., Ganjali, M. R., Tasharrofi, S., "Porous nitrogen-doped graphene prepared through pyrolysis of ammonium acetate as an efficient ORR nanocatalyst", International Journal of Hydrogen Energy 43, 33:15941-15951(2018).
[3]       Sadegh Hassani, S., Ganjali, M. R., Samiee, L., Rashidi, A. M., Tasharrofi, S., Yadegari, A., Shoghi, F., Martel, R., "Comparative Study of Various Types of Metal-Free N and S Co-Doped Porous Graphene for High Performance Oxygen Reduction Reaction in Alkaline Solution", Journal of Nanoscience and Nanotechnology, 18:7, (2018).
[4]       Karmakar, S., Kulkarni, N. V., Nawale, A. B., Lalla, N. P., Mishra, R., Sathe, V. G., Bhoraskar, S. V., Das, A. K. J. Phys. D: Appl. Phys., 42, 115201/1–115201/14, (2009).
[5]       Sprinkle, M., Soukiassian, P., de Heer, W. A., Berger, C., Conrad, E. H., "Epitaxial graphene: the material for graphene electronics", Phys. Status Solidi RRL 3: A91–A94 (2009).
[6]       Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader Hans, J., Mullen, K., "Two-dimensional graphene nanoribbons", J. Am. Chem. Soc. 130:4216–7 (2008).
[7]       Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", J. M. Nature, 458:872–876 (2009).
[8]       Edwards, R. S., Coleman, K. S., "Graphene synthesis: relationship to applications Nanoscale", 5: 38 (2013).
[9]       Narayan, R., Viswanathan, B., "Chemical and Electrochemical Energy Systems", Universities press (IndiaI) limited, (1998).
[10]     Kirubakaran, A., Jain, S., Nema, R. K., "A review on fuel cell technologies and power electronic interface", renewable and sustainable energy reviews, 13:2430-2440 (2009).
[11]     Zhang, H., Wang, Y., Wang, D., Li, Y., Liu, X., Liu, P., Yang, H., An, T., Tang, Z., Zhao, H., "Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction", Small. 10:3371 (2014).
[12]     Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Pennycook, S. J., Dai, H., "An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes", Nature Nanotechnology. 7:394 (2012).
[13]     Bag, S., Mondal, B., Kumar, D. A., Raj, C. R., "Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen, Reduction Reaction", Electrochimica Acta. 163:16 (2015).
[14]     Li H., Liu H., Jong Z. E., Qu W., Geng D., Sun X., Wang H., "Nitrogen doped carbon nanotubes with high activity Energy", 36: 2258-2265 (2011).
[15]     Seger, B., Kongkannand, A., Vinodgopal, K., Kamat, P. V., "Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell". Journal of Electrochemical Society. 621:198 (2008).
[16]     Rajalakshmi, N., Lakshmi, N., Dhathathreyan, K. S., "Nano titanium oxide catalyst support for proton exchange membrane fuel cells", International Journal of hydrogen Energy. 33:7521 (2008).
[17]     Zhang, Z., Wang, X., Cui, Z., Liu, C., Lu, T., Xing, W., "Pd nanoparticles supported onWO3/C hybrid material as catalyst for oxygen reduction reaction", Journal of Power Sources. 185:941 (2008).
[18]     Sasikumar, G., Ihm, J. W., Ryu, H., "Optimum nafion contenet in PEM fuel cell electrode", Electrochemica Acta. 50:601 (2008).
[19]     Vengatesan, S., Kim, H. J., Kim, S. K., Oh, I. H., Lee, S. Y., Cho, E., Ha, H. Y., Lim, T. H., "High dispersion platinium catalyst using mesoporous carbon supportfor fuel cells", Electrochemica Acta. 54:856 (2008).
[20]     Yang, W., Yang, C., Sun, M., Yang, F., Ma, Y., Zhang, Z., Yang, X., "Green synthesis of nanowire like Pt nanostructures and their catalytic properties", Talanta. 78, 557 (2009).
[21]     Kim, J. Y., Oh, T. K., Shin, Y., Bonnett, J., Weil, K. S., "A Novel Non-Platinum Group Electrocatalyst for PEM Fuel Cell Application", International Journal of Hydrogen Energy. 36:4557 (2011).
 
 
[22]     Daems, N., Sheng, X., Vankelecom, I. F. J., Pescarmona, P. P., "Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction", J. Mater. Chem. A. 2:4085 (2014).
[23]     Wang, B., "Recent development of non platinum catalysts for oxygen reduction reaction", J. power sources, 152:1-15 (2005).
[24]     Choi, H.J., Jung, S. M., Seo, J. M., Chang, D. W., Dai, L., Baek J. B., "Graphene for energy conversion and storage in fuel cells and supercapacitors". Nano Energy 1: 534–551 (2012).
[25]     Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., Nakamura, J., "Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts", Science, 351:361-365 (2016).
[26]     Karthikayini, M. P., Thirupathi, T., Wang, G., Ramani, V. K., Raman, R. K., "Highly Active and Durable Non-Precious Metal Catalyst for the Oxygen Reduction Reaction in Acidic Medium", Journal of the Electrochemical Society, 163 (6): F539-F547(2016).
[27]     Zhang, L., Niu, J., Li, M., Xia, Z., "Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells", J. Phys. Chem. C 118, 3545-3553 (2014).
[28]     Wu, G., More, K. L., Johnston, C. M., Zelnay, P., "High performance electrocatlysts for oxygen reduction derived from polyaniline Iron, Cobalt", Science, 332, (2012).
[29]     Zheng, J. S., Wang, M. X., Zhang, X. S., Wu, Y. X., Li, P., Zhou, X. G., Yuan, W. K., "Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction", Journal of Power Sources. 175: 211 (2008).
[30]     Abdalla, A. M., Hossain, S., Azad, A. T., Pg, Mohammad I. Petra, "Nanomaterials for solid oxide fuel cells: A review", Renewable and Sustainable Energy Reviews 82(353):368, (2018).
[31]     Samiee, L., Sadegh Hassani, S., Ganjali, M. R., Rashidi, A. M., "Facile synthesis of N, S-doped graphene from sulfur trioxide pyridine precursor for the oxygen reduction reaction", Iranian Journal of Hydrogen & Fuel Cell, 3:231-240 (2017).
[32]     Sadegh Hassani, S., Ganjali, M. R., Samiee, L. Rashidi, A. M., "Efficient Electrocatalyst based on Platinum Incorporated into N,S co-doped Porous Graphene for Oxygen Reduction Reaction in Microbial Fuel Cell", , Int. J. Electrochem. Sci., 13:11001 – 11015 (2018).
[33]     Sadegh Hassani, S., Samiee, L., "Carbon Nanostructured Catalysts as High Efficient Materials for Low Temperature Fuel Cells", Handbook of Ecomaterials, 1-28 (2018).
[34]     Shi, Z., Jayatissa, A. H., Review, "The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects", J. Materials 11, 36 (2018)
[35]     Mahmoudi, T., Wang, Y., Hahn, Y. B., "Graphene and its derivatives for solar cells application", Nano Energy,47:51-65 (2018).
[36]     Jeong, G. H., Kim, S. J., Han, E. M., Park, K. H., "Graphene/Polyaniline Nano-composite Multilayer Counter Electrode by Inserted Polyaniline of Dye-Sensitized Solar Cells", Mol. Cryst. Liq. Cryst., 620:112–116, (2015).
[37]     Wan, L., Wang, B., Wang, S., Wang, X., Guo, Z., Xiong, H., Dong, B., Zhao, L., Lu, H., Xu, Z., Zhang, X., Li, T., Zhou, W., "Water-Soluble Polyaniline/ Graphene Prepared by In-situ Polymerization in Graphene Dispersions and Use as Counter-Electrode Materials for Dye Sensitized Solar Cells", React. Funct. Polym., 79:47–53 (2014).
[38]     Wang, Q., Zhuo, S., Xing, W., "Graphene/Polyaniline Nanocomposite as Counter Electrode of Dye-Sensitized Solar Cells", Mater. Lett., 69:27–29(2012).
[39]     Hsu, Y. C., Chen, G. L., Lee, R. H., "Graphene Oxide Sheet- Polyaniline Nano-composite Prepared Through In-situ Polymerization/ Deposition Method for Counter Electrode of Dye- Sensitized Solar Cell", J. Polym. Res., 21, 440 (2014).
[40]     Chatterjee, S., Layek, R. K., Nandi A. K., "Changing the Morphology of Polyaniline from a Nanotube to a Flat Rectangular Nanopipe by Polymerizing in the Presence of Amino- Functionalized Reduced Graphene Oxide and its Resulting Increase in Photocurrent", Carbon, 52:509-519 (2013).
[41]     Xu, D., Yu, X., Yang, L., Yang, D., "Design and Photovoltaic Properties of Graphene/Silicon Solar Cell", Journal of Electronic Materials, 47(9) (2018).
[42]     Zhang, Y., Zhang, L., Zhou, C., "Review of chemical vapor deposition of graphene and related applications", accounts of chemical research; 46 (10):2329-2339 (2013).
[43]     Kim, S. R., Parvez, M. K., Chhowalla, M., "UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells", Chem. Phys. Lett. 483 (1): 124–127 (2009).
[44]     Liang, J., Bi, H.,Wan, D., Huang, F., "Novel Cu nanowires/graphene as the back contact for CdTe solar cells".Adv. Funct. Mater. 22:1267–1271 (2012).
[45]     Lin, T., Huang, F., Liang, J., Wang, Y., "A facile preparation route for boron-doped graphene, and its CdTe solar cell application". Energy Environ. Sci. 4:862–865 (2011).
[47]     Pollak, E., Geng, B. S., Jeon, K. J., Lucas, I. T., Richardson, T. J., Wang, F., Kostecki, R., "The interaction of Li+ with single-layer and few-layer graphene", Nano Lett. 10:3386-3388 (2010).
[48]     Jin, M., Yu, L. C., Shi, W. M., Deng, J. G., Zhang, Y.N., "Enhanced Absorption and Diffusion Properties of Lithium on B,N,VC-decorated Graphene", J. Sci Rep. 6: 37911 (2016).
[49]     Lian, P. C., Zhu, X. F., Liang, S. Z., Li, Z., Yang, W. S., Wang, H. H, "Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries", Electrochim. Acta, 55:3909-3914 (2010).
[50]     Vargas, O., Caballero, A., Morales, J., Elia, G. A., Scrosati, B., Hassoun, J., "Electrochemical
performance of a graphene nanosheets anode in a high voltage lithium-ion cell", Phys. Chem. Chem. Phys, 15:20444-20446 (2013).
[51]     Fan, Z. J., Yan, J., Zhi, L. J., Zhang, Q., Wei, T., Feng, J., "A threedimensional carbon nanotube/ graphene sandwich and its application as electrode in supercapacitors". Adv Mater 22(33):3723–3728 (2010).
[52] Zhang, Y., Wang, W., Li, P., Fu, Y., Ma, X., "A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries", J. Power Sources, 210:47-53 (2012).
[53]     Chen, S., Yeoh, W., Liu, Q., Wang, G., "Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries", Carbon, 50:4557 –4565 (2012).
[54]     Zhu, S., Wang, J., Fan, W., "Graphene-based catalysis for biomass conversion", Catal. Sci. Technol., 5:3845-3858 (2015).
[55]     Kumar, D. V., Shifrina, Z. B., Bronstein, L. M., "Graphene and graphene-like based materials in biomass conversion: Paving the way to the future", 5:25131-25143 (2017).
[56]     Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., "Electric field effect in atomically thin carbon films", Science (Washington, DC, U. S.), 306:666-669 (2004).
 
[57]     Ma, H., Li, C., Zhang, M., Hong, J. D., Shi, G., "Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors", J. Mater. Chem. A, 5:17040-17047 (2017).
[58]     Wang, H., Wang, Y., Deng, T., Chen, C., Zhu, Y., Hou, X., "Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to 5,5′(oxy-bis(methylene)bis-2-furfural over graphene oxide", Catal. Commun. 59:127-130 (2015).
[59]     Nakhate, A. V., Yadav, G. D., "Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation", ACS Sustainable Chem. Eng., 4:1963-1973 (2016).
[60]     Mondal, D., Chaudhary, J. P., Sharma, M., Prasad, K., "Simultaneous dehydration of biomass-derived sugars to 5-hydroxymethyl furfural (HMF) and reduction of graphene oxide in ethyl lactate: one pot dual chemistry", RSC Adv., 4:29834-29839 (2014).
[61]     Wang, H., Kong, Q., Wang, Y., Deng, T., Chen, C., Hou, X., Zhu, Y., "Graphene Oxide Catalyzed Dehydration of Fructose into 5‐Hydroxymethylfur-fural with Isopropanol as Cosolvent", ChemCatChem, 6:728-732 (2014).
[62]     Sutton, A. D., Waldie, F. D., Wu, R., Schlaf, M., Pete' Silks, L. A., Gordon, J. C., "The hydrodeoxygenation of bioderived furans into alkanes", Nat. Chem., 5:428-432 (2013).
[63]     Dutta, S., Bohre, A., Zheng, W., Jenness, G. R., Nunez, M., Saha, B., Vlachos, D. G., "Solventless
C–C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst", ACS Catal., 7:3905-3915 (2017).
[64]     Zhu, S., Chen, C., Xue, Y., Wu, J., Wang, J., Fan, W., "Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions", ChemCat-Chem, 6, 3080-3083 (2014).