بهینه‎سازی چندمتغیره به‎منظور سنتز نانوساختارهای روی فریت و بررسی خواص الکتروکاتالیستی آن‎ها در ردیابی تیروزین

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار شیمی تجزیه، دانشگاه سیستان و بلوچستان

چکیده

علم کمومتریکس با استفاده از آمار و ریاضیات برای حل مشکلات آزمایشگاهی و توصیف نتایج تجربی بهطور مؤثر در زمینههای گوناگون بهکار گرفته میشود. ازجمله کاربردهای این روش، حل مشکلات مربوطبه بهینهسازی روشهای آزمایشگاهی است. در پژوهش حاضر، بهمنظور سنتز نانوساختارهای روی فریت، از روش امواج فراصوت استفاده شد. هم‌چنین بهمنظور کاهش استفاده از مواد شیمیایی، نشاسته بهعنوان یک مادۀ سبز در مسیر سنتز بهکار گرفته شد. نوآوری دیگر مطالعۀ حاضر، استفاده از روش بهینهسازی چندمتغیره بهجای روشهای متداول بهینهسازی یک عامل در یک زمان است. بهمنظور دست‌یابی به این هدف، ابتدا نانوساختارها، براساس طراحی باکس- بنکن سنتز شدند. سپس، برای بهینهسازی عوامل مؤثر بر سنتز نانوساختارها، نتایج پراش پرتو ایکس بهعنوان پاسخهای آزمایشگاهی به‌وسیلۀ روش سطح پاسخ استفاده شد. درنهایت، نانوساختارهای بهینه، برای بررسی خواص الکتروکاتالیستی در اندازهگیری تیروزین بهکار برده شدند. نتایج نشان داد که نانوساختارهای روی فریت سنتزشده در شرایط بهینه، از ظرفیت مناسبی برای ردیابی مقادیر بسیار کم تیروزین در نمونههای حقیقی پیچیده برخوردار هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multivariate Optimization for Synthesis of Zinc Ferrite Nanostructures and Investigation of Their Electrocatalytic Properties in Detection of Tyrosine

نویسنده [English]

  • A. Khoobi
Assistant Professor of Analytical Chemistry, University of Sistan and Baluchestan
چکیده [English]

Chemometrics science is effectively used for solving experimental problems and describing of experimental results in different fields using statistics and mathematics. Such applications of the method can be referred to solving the problems about optimization of the experimental methods. In the present research, ultrasonic irradiations was used for synthesis of zinc ferrite nanostructures. Also, starch as a green material was applied to reduce using of chemicals. Other novelty of the present study was application of the multivariate optimization method instead one-at-a-time usual methods. For achieving the purpose, at first the nanostructures were synthesized based on Box-Behnken design. Then, the results of X-ray diffraction were used as experimental responses for optimization of effective parameters on the synthesis of the nanostructures using response surface methodology. Finally, the optimized nanostructures were applied for investigation of electrocatalytic properties in tyrosine detection. The results showed the zinc ferrite nanostructures that were synthesized in the optimum conditions contain appropriate potential for trace analysis of tyrosine in complicated real samples.

کلیدواژه‌ها [English]

  • Zinc Ferrite Nanostructures
  • Green Synthesis
  • Ultrasonic Irradiations
  • Box–Behnken Design
  • Response Surface Methodology
  • Electrocatalytic Activity
[1]        Goud, S., Venkatesh, N., Kumar, D. R., Barapati, S., & Veerasomaiah, P. (2022). Study of structural, optical, photocatalytic, electromagnetic, and biological properties Co0.75Mg0.25CexFe2−xO4 of Mg-Co nano ferrites. Inorganic Chemistry Communications, 145, 109969.
[2]        Esfahani, M. H., Zinatloo-Ajabshir, S., Naji, H., Marjerrison, C. A., Greedan, J. E., & Behzad, M. (2023). Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE= Dy, Ho, and Yb) microstructures. Ceramics International, 49(1), 253-263.
[3]        Zonarsaghar, A., Mousavi-Kamazani, M., & Zinatloo-Ajabshir, S. (2022). Co-precipitation synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron, 33, 6549-6554.
[4]        Zinatloo-Ajabshir, S., Shafaati, E., & Bahrami, A. (2022). Facile fabrication of efficient Pr2Ce2O7 ceramic nanostructure for enhanced photocatalytic performances under solar light. Ceramics International, 48(17), 24695-24705.
[5]        Nikroo, R., Alemzadeh, I., (2017). The effect of starch coating on stabilization of bimetallic Fe/Ni nano particles. Iranian, Chemical Engineering Journal, 16(92), 76-81, In Persian.
[6]        Hosseinzadeh, G., Ghasemian, N., & Zinatloo-Ajabshir, S. (2022). TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. Inorganic Chemistry Communications, 136, 109144.
[7]        Bohra, M., Alman, V., & Arras, R. (2021). Nanostructured ZnFe2O4: an exotic energy material. Nanomaterials, 11(5), 1286.
[8]        Goodarz Naseri, M., Saion, E. B., & Kamali, A. (2012). An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. International Scholarly Research Notices, 2012.
[9]        Masoudpanah, S. M., Ebrahimi, S. S., Derakhshani, M., & Mirkazemi, S. M. (2014). Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method. Journal of magnetism and magnetic materials, 370, 122-126.
[10]      Vinosha, P. A., Mely, L. A., Jeronsia, J. E., Krishnan, S., & Das, S. J. (2017). Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik, 134, 99-108.
[11]      Marinca, T. F., Chicinas, I., Isnard, O., & Pop, V. (2011). Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectronics and Advanced Materials-Rapid Communications, 5, 39-43.
[12]      Manohar, A., Krishnamoorthi, C., Naidu, K. C. B., & Pavithra, C. (2019). Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Applied Physics A, 125, 1-10.
[13]      Dhiman, M., Sharma, R., Kumar, V., & Singhal, S. (2016). Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceramics International, 42(11), 12594-12605.
[14]      Mondal, P., Anweshan, A., & Purkait, M. K. (2020). Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 259, 127509.
[15]      Zhu, X., Cao, C., Su, S., Xia, A., Zhang, H., Li, H., Liu, Z., & Jin, C. (2021). A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: structural and magnetic properties. Ceramics International, 47(11), 15173-15179.
[16]      Anupriya, J., Babulal, S. M., Chen, T. W., Chen, S. M., Kumar, J. V., Lee, J. W., Yu, S-P. R. Yu J., Yu. Y., & Hong, C. Y. (2021). Facile hydrothermal synthesis of cubic zinc ferrite nanoparticles for electrochemical detection of anti-inflammatory drug nimesulide in biological and pharmaceutical sample. Int. J. Electrochem. Sci, 16, 1-19.
[17]      NS, A. K., Ashoka, S., & Malingappa, P. (2018). Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. Journal of environmental chemical engineering, 6(6), 6939-6946.
[18]      Sheikhshoaeia, F., Mehrana, M., Sheikhshoaie, I., (2018). Preparation and characterization of zinc and tin-mixed nano-oxide as core-shell and investigation of its sensing property for ethanol gas. Iranian Chemical Engineering Journal. 16(94) 116-124, In Persian,
[19]      Lv, L., Cheng, P., Wang, Y., Xu, L., Zhang, B., Lv, C., ... & Zhang, Y. (2020). Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors. Sensors and Actuators B: Chemical, 320, 128384.
[20]      Neravathu, D., Paloly, A. R., Sajan, P., Satheesh, M., & Bushiri, M. J. (2020). Hybrid nanomaterial of ZnFe2O4/α-Fe2O3 implanted graphene for electrochemical glucose sensing application. Diamond and Related Materials, 106, 107852.
[21]      Zheng, C., Zhang, C., He, L., Zhang, K., Zhang, J., Jin, L., Asiri, A. M., Alamry, K. A., & Chu, X. (2020). ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing. Journal of Alloys and Compounds, 849, 156461.
[22]      Huang, Y., Tang, Y., Xu, S., Feng, M., Yu, Y., Yang, W., & Li, H. (2020). A highly sensitive sensor based on ordered mesoporous ZnFe2O4 for electrochemical detection of dopamine. Analytica Chimica Acta, 1096, 26-33.
[23]      Ning, L., Guan, X., Ma, J., Wang, M., Fan, X., Zhang, G., Zhang, F., Peng W., & Li, Y. (2018). A highly sensitive nonenzymatic H2O2 sensor based on platinum, ZnFe2O4 functionalized reduced graphene oxide. Journal of Alloys and Compounds, 738, 317-322.
[24]      Esfahani Bolandbalaei, Z., & Rostami, Kh. (2021). Verification of experimental design and statistical methods for optimization of dark hydrogen production. Iranian Chemical Engineering Journal. 20(114), 49-76, [In Persian]
[25]      Zohdi, S. H., & Mansouri, S. (2023). Modeling and Optimization of Selectivity and Activity of Co/Al2O3 Catalyst in the Fischer Tropsch Synthesis. Iranian Chemical Engineering Journal, 22(129), 26-38. [In Persian].
[26]      Orlandini, S., Gotti, R., & Furlanetto, S. (2014). Multivariate optimization of capillary electrophoresis methods: a critical review. Journal of Pharmaceutical and Biomedical Analysis, 87, 290-307.
[27]      Dejaegher, B., & Vander Heyden, Y. (2011). Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. Journal of pharmaceutical and biomedical analysis, 56(2), 141-158.
[28]      Chen, W. H., Uribe, M. C., Kwon, E. E., Lin, K. Y. A., Park, Y. K., Ding, L., & Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917.
[29]      Brereton, R. G., (1990)."Chemometrics: Application of Mathematics and Statistics to Laboratory Systems", Ellis Horwood Ltd., New York.
[30]      Abbas, A., & Amin, H. M. (2022). Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchemical Journal, 175, 107166.
[31]      Dhandapani, E., Thangarasu, S., Ramesh, S., Ramesh, K., Vasudevan, R., & Duraisamy, N. (2022). Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor-A review. Journal of Energy Storage, 52, 104937.
[32]      Fresco-Cala, B., & Cardenas, S. (2022). Advanced polymeric solids containing nano-and micro-particles prepared via emulsion-based polymerization approaches. A review. Analytica Chimica Acta, 1208, 339669.
[33]      Mousavi, S. H., Movahedi, B., Zarrabi, A., (2016). Study of magnetic iron oxide nanoparticles synthesis for diagnosis-therapeutic applications. Iranian Chemical Engineering Journal. 15(84), 6-16, [In Persian].
[34]      Jin, G. P., & Lin, X. Q. (2004). The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochemistry communications, 6(5), 454-460.
[35]      Ali, H. M., Alsohaimi, I. H., Nayl, A. A., Essawy, A. A., Gamal, M., & Ibrahim, H. (2022). A new ultrasensitive platform based on f-GCNFs@ nano-CeO2 core-shell nanocomposite for electrochemical sensing of oxidative stress biomarker 3-nitrotyrosine in presence of uric acid and tyrosine. Microchemical Journal, 183, 108068.
[36]      Tashkhourian, J., Daneshi, M., & Nami-Ana, S. F. (2016). Simultaneous determination of tyrosine and tryptophan by mesoporous silica nanoparticles modified carbon paste electrode using H-point standard addition method. Analytica chimica acta, 902, 89-96.
[37]      Attia, M. S., & Yakout, A. A. (2016). Novel method for tyrosine assessment in vitro using luminescence quenching of the nano optical sensor
Eu–ciprofloxacin doped in a sol-gel matrix. RSC advances, 6(25), 20467-20474.
[38]      Nishio, T., Toukairin, Y., Hoshi, T., Arai, T., & Nogami, M. (2020). Determination of 3-chloro-l-tyrosine as a novel indicator of chlorine poisoning utilizing gas chromatography-mass spectrometric analysis. Legal Medicine, 47, 101782.
[39]      Honeywell, R., Yarzadah, K., Giovannetti, E., Losekoot, N., Smit, E. F., Walraven, M., J. S. Lind, W., Tibaldi, C., Verheul, H. M., & Peters, G. J. (2010). Simple and selective method for the determination of various tyrosine kinase inhibitors used in the clinical setting by liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 878(15-16), 1059-1068.
[40]      Bouchet, S., Chauzit, E., Ducint, D., Castaing, N., Canal-Raffin, M., Moore, N., Titier, K., & Molimard, M. (2011). Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clinica Chimica Acta, 412(11-12), 1060-1067.
[41]      Merienne, C., Rousset, M., Ducint, D., Castaing, N., Titier, K., Molimard, M., & Bouchet, S. (2018). High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. Journal of pharmaceutical and biomedical analysis, 150, 112-120.
[42]      Lou, Y., Qin, H., Hu, Q., Chai, Y., Zhou, H., Chen, M., Wang Q., Huang, P., Gu, J., & Zhang, Y. (2022). Development and validation of a novel LC-MS/MS method for simultaneous quantitative determination of tyrosine kinase inhibitors in human plasma. Journal of Chromatography B, 1208, 123394.
[43]      Kamarei, F., Ebrahimzadeh, H., & Yamini, Y. (2010). Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples. Journal of hazardous materials, 178(1-3), 747-752.
[44]      Maletin, M., Cvejić, Ž., Rakić, S., Nikolić, L. M., & Srdić, V. V. (2006, June). Low temperature synthesis of nanocrystalline ZnFe2O4 powders. In Materials science forum, 518, 91-94). Trans Tech Publications Ltd.
[45]      Kumar, P. A., Shrotri, J. J., Kulkarni, S. D., Deshpande, C. E., & Date, S. K. (1996). Low temperature synthesis of Ni0. 8Zn0. 2Fe2O4 powder and its characterization. Materials Letters, 27(6), 293-296
[46]      Monsef, R., & Salavati-Niasari, M. (2021). Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosensors and Bioelectronics, 178, 113017.
[47]      Tapeinos, C., Kartsonakis, I., Liatsi, P., Daniilidis, I., & Kordas, G. (2008). Synthesis and characterization of magnetic nanocontainers. Journal of the American Ceramic Society, 91(4), 1052-1056.
[48]      Ramimoghadam, D., Bin Hussein, M. Z., & Taufiq-Yap, Y. H. (2013). Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chemistry Central Journal, 7, 1-10.
[49]      Solanki, P., Oza, M., Jethva, H., Joshi, G., & Joshi, M. (2022). Synthesis, structural, FTIR and UV–vis spectroscopic, thermal and dielectric studies of magnesium ion doped nickel pyrophosphate nano-particles. Materials Today: Proceedings, 67, 879-886.
[50]      Almeida, K. B., Ramos, A. S., Nunes, J. B., Silva, B. O., Ferraz, E. R., Fernandes, A. S., Felzenszwalb, I., Amaral A. C. F., Roullin V. G., & Falcao, D. Q. (2019). PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 181, 935-942.