سامانۀ تخلیۀ مایع صفر (ZLD): مروری بر رویکردهای نوین در بازیابی آب از منابع آبی نامتعارف

نوع مقاله : مقاله مروری

نویسندگان

1 استاد مهندسی شیمی، سازمان پژوهش‌های علمی و صنعتی ایران

2 دانشجوی دکتری مهندسی شیمی، سازمان پژوهش‌های علمی و صنعتی ایران

چکیده

کمبود منابع آب در سال‌های آتی به یکی از بزرگترین چالش­های جهانی تبدیل خواهدشد و به همیندلیل میباید از تمامی منابع آبی نامتعارف در دسترس استفاده کرد. تخلیۀ مایع صفر بهعنوان یک سامانۀ نوظهور برای به حداقل رساندن پساب (بهویژه پساب­ های شور) و بیشینه‌کردن بازیابی منابع آب، در چند سال اخیر توجه پژوهشگران و واحدهای صنعتی را جلب کردهاست. اگرچه، تبخیر حرارتی بهعنوان روش متداول تخلیۀ مایع صفر شناخته شدهاست، در سالیان اخیر استفاده از فرایندهای غشایی متداول اسمز معکوس و فرایندهای جدید تقطیر غشایی، اسمز مستقیم و الکترودیالیز در ترکیب با روش­های حرارتی و بلورسازها جلب توجه کردهاست تا با کاهش حجم پساب، شدت جریان ورودی به سامانه­های حرارتی کاهش یابد. در این مقاله، پس از معرفی اجمالی سامانه­های تخلیۀ مایع صفر حرارتی و غشایی، تحقیقاتی گسترده- که بهمنظور بهبود عملکرد و اقتصاد این سامانه­ها با استفاده از فرایندهای ترکیبی ازجمله ترکیب روش­های حرارتی- غشایی در دست انجام است- مرور شدهاست. با مقایسۀ عملکرد هر یک از آنها، ظرفیت و محدودیت‌های این سامانه­ها بررسی شدهاست. اگرچه، استفاده از سامانه­های تخلیۀ مایع صفر باعث افزایش سرمایه ­گذاری اولیه و هزینههای عملیاتی و درنتیجه، قیمت آب تولیدی خواهدشد، ولی بهدلیل کمبود منابع آبی در مناطقی با تنش آبی  و نیز آثار مخرب زیستمحیطی ناشی از تخلیۀ پساب­ ها، می ­توان انتظار داشت که در آیندۀ نزدیک به‌عنوان راهکاری ضروری برای مدیریت پایدار منابع آبی نامتعارف به بهره‌برداری برسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Zero Liquid Discharge (ZLD): A Review on Novel Approaches in Water Recovery from Unconventional Water Resources

نویسندگان [English]

  • S. Shokrollahzadeh 1
  • M. T. Fouladvand 2
1 Professor of Chemical Engineering, Iranian Research Organization for Science and Technology
2 Ph. D. Student of Chemical Engineering, Iranian Research Organization for Science and Technology
چکیده [English]

Water scarcity will become one of the biggest global challenges in the coming years and all available unconventional water resources must be used to produce water. Zero liquid discharge as an emerging system to minimize effluent (especially brines) and maximize water recovery from wastewater has been used by researchers and industries in recent years. Thermal evaporation is known as a common method for zero liquid discharge. However, the use of conventional and novel membrane processes of reverse osmosis, membrane distillation, forward osmosis, and electrodialysis in combination with thermal systems and crystallizers have been recently considered to reduce the volume of wastewater and influent flow rate of the thermal systems. In this article, after a brief introduction of thermal and membrane zero liquid discharge systems, the conducted research to improve the economics of these systems using thermal-membrane hybrid processes is reviewed. By comparing the performance of each of them, the potential and limitations of these systems have been explained. Although the use of zero liquid discharge systems increases the initial investment, operating costs, and water cost, due to the lack of water resources in water stress areas and also the harmful environmental effects caused by wastewater discharge, it can be expected to be widely exploited in the near future. It is a necessary solution for the sustainable management of unconventional water resources.

کلیدواژه‌ها [English]

  • Water Recovery
  • Unconventional Waters
  • Thermal Processes
  • Membrane Processes
  • Process Economy

 

[1]        Tong, T., & Elimelech, M. (2016). The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environmental Science & Technology, 50(13), 6846-6855. https://doi.org/10.1021/acs.est.6b01000.
[2]        Leal Filho, W., Azul, A. M., Brandli, L., Özuyar, P. G., & Wall, T. (Eds.). (2020). Zero hunger. Cham: Springer International Publishing.
[3]        Cheremisinoff, P. N. (2018). Handbook of water and wastewater treatment technology. Routledge, p. 481.
[4]        Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management, 227, 395-405. https://doi.org/10.1016/j.jenvman.2018.08.069.
[5]        Eslamian, S., & Eslamian, F. A. (Eds.). (2017). Handbook of Drought and Water Scarcity: Environmental Impacts and Analysis of Drought and Water. CRC Press.
[6]        Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64-74. https://doi.org/10.1016/j.coesh.2018.03.005.
[7]        Grant, S. B., Saphores, J. D., Feldman, D. L., Hamilton, A. J., Fletcher, T. D., Cook, P. L., ... & Marusic, I. (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337(6095), 681-686. https://doi.org/ 10.1126/science.1216852.
[8]        Mays, L. W. (2010). Water Resources Sustainability, Second edition, McGraw-Hill, New York, p. 13.
[9]        Byers, B. (1995). Zero discharge: A systematic approach to water reuse. Chemical Engineering, 102(7), 96.
[10]      Barrington, D. J., & Ho, G. (2014). Towards zero liquid discharge: the use of water auditing to identify water conservation measures. Journal of Cleaner Production, 66, 571-576. https://doi.org/10.1016/j.jclepro.2013.11.065.
[11]      Lens, P., Pol, L. H., Wilderer, P., Asano, T. (2002). Water recycling and resource recovery in industry: analysis, technologies and implementation. First edition, IWA publishing, p. 228,
[12]      Lanny, W., The Global Push for Zero. https://www. waterworld.com/articles/wwi/print/volume-30/issue-1/technology-case-studies/the-global-push-for-zero.
html, available in 16 October (2018).
[13]      Yaqub, M., & Lee, W. (2019). Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Science of The Total Environment, 681, 551-563. https://doi.org/10.1016/j.scitotenv.2019.05.062.
[14]      Ghaffour, N., Missimer, T. M., & Amy, G. L. (2013). Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination, 309, 197-207. https://doi.org/10.1016/j.desal.2012.10.015.
[15]      Shaffer, D. L., Arias Chavez, L. H., Ben-Sasson, M., Romero-Vargas Castrillón, S., Yip, N. Y., & Elimelech, M. (2013). Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environmental Science & Technology, 47(17), 9569-9583. https://doi.org/10.1021/es401966e.
[16]      Burbano, A., & Brankhuber, P. (2012). Demonstration of membrane zero liquid discharge for drinking water systems: A literature review. WERF 5T10.
[17]      McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S., & McGurgan, G. D. (2013). Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination, 312, 67-74. https://doi.org/10.1016/j.desal.2012.11.032.
[18]      Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment: A critical review. Water Research, 75, 164-187. https://doi.org/10.1016/j.watres.2015.02.032.
[19]      Stanford, B. D., Leising, J. F., Bond, R. G., & Snyder, S. A. (2010). Inland desalination: Current practices, environmental implications, and case studies in Las Vegas, NV. Sustainability Science and Engineering, 2, 327-350. https://doi.org/10.1016/S1871-2711(09) 00211-6.
[20]      Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. Science333(6043), https://doi.org/712-717. 10.1126/science.1200488.
[21]      Al-Karaghouli, A., & Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356. https://doi.org/10.1016/j.rser.2012.12.064.
[22]      Bond, R., & Veerapaneni, S. (2007). Zero Liquid Discharge for Inland Desalination. AWWA Research Foundation, AWWA.
[23]      Loganathan, K., Chelme-Ayala, P., & El-Din, M. G. (2016). Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge. Journal of Environmental Management, 165, 213-223. https://doi.org/10.1016/j.jenvman.2015.09.019.
[24]      Subramani, A., & Jacangelo, J. G. (2014). Treatment technologies for reverse osmosis concentrate volume minimization: A review. Separation and Purification Technology, 122, 472-489. https://doi.org/10.1016/j.seppur.2013.12.004.
[25]      Bond, R., & Veerapaneni, S. (2008). Zeroing in on ZLD technologies for inland desalination. JournalAmerican Water Works Association, 100(9), 76-89.
[26]      TOSHIBA, Solutions for industrial water treatment zero liquid discharge (ZLD) with HERO™. https://www.toshiba.co.jp/sis/en/environment/solution/s2/zld.htm, available in 16 December (2021).
[27]      Bush, J. A., Vanneste, J., & Cath, T. Y. (2016). Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: Effects of scaling and fouling on performance, efficiency, and salt rejection. Separation and Purification Technology, 170, 78-91. https://doi.org/10.1016/j.seppur.2016.06.028.
[28]      Winter, D. (2015). Membrane distillation: A thermodynamic, technological and economic analysis. Shaker Verlag.
[29]      Yadav, A., Labhasetwar, P. K., & Shahi, V. K. (2022). Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Science of The Total Environment, 806, 150692. https://doi.org/10.1016/j.scitotenv.2021.150692.
[30]      Camacho, L. M., Dumée, L., Zhang, J., Li, J. D., Duke, M., Gomez, J., & Gray, S. (2013). Advances in membrane distillation for water desalination and purification applications. Water, 5(1), 94-196. https://doi.org/10.3390/w5010094.
[31]      Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment: A critical review. Water Research, 75, 164-187. https://doi.org/10.1016/j.watres.2015.02.032.
[32]      Tijing, L. D., Choi, J. S., Lee, S., Kim, S. H., & Shon, H. K. (2014). Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 453, 435-462. https://doi.org/10.1016/j.memsci.2013.11.022.
[33]      Lin, S., Yip, N. Y., & Elimelech, M. (2014). Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling. Journal of Membrane Science, 453, 498-515. https://doi.org/10.1016/j.memsci.2013.11.016.
[34]      Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., & Drioli, E. (2008). Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 323(1), 85-98.
[35]      Martinetti, C. R., Childress, A. E., & Cath, T. Y. (2009). High recovery of concentrated RO brines using forward osmosis and membrane distillation. Journal of Membrane Science, 331(1-2), 31-39. https://doi.org/10.1016/j.memsci.2008.06.006.
[36]      Tufa, R. A., Curcio, E., Brauns, E., van Baak, W., Fontananova, E., & Di Profio, G. (2015). Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination. Journal of Membrane Science, 496, 325-333. https://doi.org/10.1016/j.memsci.2015.09.008.
[37]      Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027.
[38]      Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S., & Elimelech, M. (2015). Forward osmosis: where are we now?. Desalination, 356, 271-284. https://doi.org/10.1016/j.desal.2014.10.031.
[39]      OasysWater, I., Changxing power plant debuts the world's first forward osmosis- based zero liquid discharge application. https://www.wateronline.com/doc/changxing-power-plant-debuts-the-world-s-first-forward-osmosis-based-zero-liquid-discharge-application-0001, available in 20 October (2017).
[40]      Wang, J., & Liu, X. (2021). Forward osmosis technology for water treatment: Recent advances and future perspectives. Journal of Cleaner Production, 280, 124354. https://doi.org/10.1016/j.jclepro.2020.124354.
[41]      Li, X., He, T., Dou, P., & Zhao, S. (2017). Forward osmosis and forward osmosis membranes. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, First edition, Elsevier publication, p. 96.
[42]      Tsai, J. H., Macedonio, F., Drioli, E., Giorno, L., Chou, C. Y., Hu, F. C., ... & Tung, K. L. (2017). Membrane-based zero liquid discharge: Myth or reality?. Journal of the Taiwan Institute of Chemical Engineers80, 192-202. https://doi.org/10.1016/j.jtice.2017.06.050.
[43]      Turek, M., Dydo, P., & Klimek, R. (2005). Salt production from coal-mine brine in ED–evaporation–crystallization system. Desalination, 184(1-3), 439-446. https://doi.org/10.1016/j.desal.2005.03.047.
[44]      Xu, T., & Huang, C. (2008). Electrodialysis‐based separation technologies: a critical review. AIChE Journal, 54(12), 3147-3159. https://doi.org/10.1002/aic.11643.
[45]      US Department of the Interior Bureau of Reclamation, “Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California, Ground Water Basin”. Desalination and Water Purification Research Program. Rep. No. 149, (2008).
[46]      McGovern, R. K., Weiner, A. M., Sun, L., Chambers, C. G., & Zubair, S. M. (2014). On the cost of electrodialysis for the desalination of high salinity feeds. Applied Energy, 136, 649-661. https://doi.org/10.1016/j.apenergy.2014.09.050.
[47 Loganathan, K., Chelme-Ayala, P., & El-Din, M. G. (2015). Treatment of basal water using a hybrid electrodialysis reversal–reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge. Desalination363, 92-98. https://doi.org/10.1016/j.desal.2015.01.020.
[48]      Ortiz, J. M., Sotoca, J. A., Expósito, E., Gallud, F., García-García, V., Montiel, V., & Aldaz, A. (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252(1-2), 65-75. https://doi.org/10.1016/j.memsci.2004.11.021.
[49]      Malek, P., Ortiz, J. M., & Schulte-Herbrüggen, H. M. A. (2016). Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy. Desalination, 377, 54-64. https://doi.org/10.1016/j.desal.2015.08.023.
[50]      Curcio, E., & Drioli, E. (2005). Membrane distillation and related operations-a review. Separation and Purification Reviews, 34(1), 35-86. https://doi.org/10.1081/SPM-200054951.
[51]      Forward Water Technologies’ industrial scale pilot plant is demonstrating low energy ZLD, https://www.forwardosmosistech.com/update-forwa
rd-water-technologies-industrial-scale-pilot-plant-is-demonstrating-low-energy-zld, available in 10 September (2022).
[52]      World first for zero liquid discharge (2016). Filtration+Separation, 53: 20-22.
[53]      Zero liquid discharge plant has been commissioned in China, https://www.pollutionequipmentnews.com/6157-2 available in 10 November (2018).
[54]      Marlett, M., Zero to hero ZLD potential for the power industry. https://www.waterworld.com/articles/wwi/print/volume-29/issue-1/technology-case-studies/zero-liquid-discharge-zld/zero-to-hero-zld-potential-for-thepower-industry.html, available in 15 February (2017).
[55]      Corporation, A. I, Aquatech ZLD project shortlisted for 2017 global water award, industrial water project of the year. https://www.aquatech.com/news/aquatech-zld-project-shortlisted-2017-global-water-award-industrialwater-project-year, available in 11 November (2017).
[56]      Alexandria University, Eco-natural model for wastewater treatment: innovative ecological design treatment approach for the reuse of wastewater in the western desert of Egypt. https://www.susana.org/en/knowledgehub/projects/database/details/454, available in 4 November (2019).
[57]      GEA, Zero liquid discharge for environmental protection. https://www.gea.com/en/news/insights/2018/zero-liquid-discharge-environmentalprotection.jsp available in 6 November (2018).
[58]      Archroma Pakistan, Archroma Pakistan – saving water passionately. https://fp.brecorder.com/2016/08/2016080170755, available in 7 November (2018).
[59]      XZERO, Everything to zero. https://www.xzero.se/en/the-xzero-system, available in 20 March (2019).
[60]      Draper, K., Waste water treatment and biochar. Biochar Journal, www.biochar-journal.org/en/ct/81, available in 26 October (2016).
[61]      Vera, V., Unfair trading practices in the food supply chain. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI (2018) 621831, available in 5 March (2018).
[62]      Akbarzadeh, A., Lotfi, M., Obareshi, M. (2017). A review of ZLD technology with an emphasis on economic estimates, 16th National Congress of Chemical Engineering of Iran, Amirkabir University of Technology, Tehran, 2-4 Bahman, In Persian.
[63]      Noshadi, M., & Afsari, M. (2020). Determination of optimum ZLD process for wastewater reuse of reverse osmosis systems (Case Study: reverse osmosis system of Lar city). Iranian Water Researches Journal, 14(2), 131-143, In Persian.
[64]      Sheibanifar, M., & Noshadi, M. (2016). Determine the Optimal ZLD Process for Reuse of Reverse Osmosis Effluent. Journal of Civil and Environmental Engineering46(84), 63-74.
[65]      Noshadi, M., Kazemizadeh, M (2015). Determination of optimum ZLD process for reuse of reverse osmosis effluent (case study: reverse osmosis of Lar city). IJST, Transactions of Civil Engineering, 39: 575588.
[66]      Implementation of environmental projects in Isfahan Refinery, Donya Eqtesad, No. 5460, News No. 386858, https://donya-e-eqtesad.com, availavle in 10 September (2022).
[67]      Persian Gulf Bidboland gas refinery project, https://absunwater.com/fa/projects/persian-gulf-bid-boland-gas-refining-co/zld, available in 12 October (2022).