بررسی آزمایشگاهی جداسازی کربن‌دی‌اکسید با حلال آبی متیل‌دی‌‌اتانول‌آمین- پیپرازین در میکروراکتور با استفاده از روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی کرمانشاه

2 دانشیار گروه مهندسی شیمی، دانشگاه صنعتی کرمانشاه

چکیده

جذب کربن‌دی‌اکسید یکی از راه‌های کاهش گازهای گلخانهای است. این مطالعه به بررسی جذب گاز کربن‌دی‌اکسید به‌وسیلۀ محلول آبی متیل‌دی‌‌اتانول‌آمین- پیپرازین با استفاده از یک میکرو کانال بهکمک روش سطح پاسخ پرداختهاست. اثر مشخصه‌های غلظت آمین (50-30 درصد وزنی)، دما (40-20 درجۀ سلسیوس)، شدت جریان حلال ورودی به میکروراکتور (9-3 میلی‌لیتر بر دقیقه) و غلظت ورودی گاز کربن‌دی‌اکسید (15-5 درصد حجمی) بر ضریب کلی انتقال جرم ارزیابی شد. برای بررسی و تحلیل نتایج از نرم‌افزار دیزاین اکسپرت استفاده شد. اهمیت متغیرهای ورودی برای این پاسخ‌ بهترتیب شدت جریان مایع > غلظت آمین > دماست. شدت جریان مایع مؤثرترین متغیر ورودی است؛ زیرا رابطۀ مستقیمی بین شدت جریان مایع و جانشینی مکان‌های جذب وجود دارد. بیشترین مقدار ضریب کلی انتقال جرم 202.50kmol/m3.h.kPa  گزارش شد. این مقدار در شرایط عملیاتی: غلظت 40 درصد وزنی حلال، شدت جریان 9 میلی‌لیتر بر دقیقۀ حلال، دمای عملیاتی 40 درجۀ سلسیوس و غلظت ورودی 10 درصد حجمی گاز کربن‌دی‌اکسید به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Laboratory Investigation of Carbon Dioxide Separation by Aqeous Methyl Diethanolamine-Piperazine Solvent in a Microreactor Using Response Surface Methodology

نویسندگان [English]

  • Sh. Choubtashani 1
  • H. Rashidi 2
1 M. Sc. Student of Chemical Engineering, Kermanshah University of Technology
2 Associate Professor of Chemical Engineering, Kermanshah University of Technology
چکیده [English]

Carbon dioxide absorption is one of the ways to reduce greenhouse gases. This study investigates carbon dioxide absorption by methyldiethanolamine-piperazine aqueous solution using a microchannel. The Design Expert software was used to check and analyze the results. The effect of the parameters of amine concentration (30-50 wt.%), temperature (20-40°C), solvent flow entering the microreactor (3-9 ml/min) and carbon dioxide concentration (5-15 vol.%) on the overall mass transfer coefficient was evaluated. The importance of the input variables for this response is in the order of liquid flow > amine concentration > temperature. Liquid flow intensity is the most effective input variable because there is a direct relationship between liquid flow intensity and the succession of absorption sites. The highest value of the overall mass transfer coefficient was reported as 202.50 kmol/m3.h.kPa. This value was obtained in operating conditions: concentration of 40 wt.% of solvent, flow intensity of 9 ml/min of solvent, operating temperature of 40 degrees Celsius and input concentration of 10 vol.% of carbon dioxide gas.

کلیدواژه‌ها [English]

  • Carbon Dioxide
  • Methyl Diodethanolamine
  • Piperazine
  • Microreactor
  • Overall Mass Transfer Coefficient
 
[1]        Yadav, S. K., & Mishra, G. C. (2013). Global Energy Demand Consequences Versus Greenhouse Gases Emission. International Journal of Engineering, 6, 781-788.
[2]        Asgarifard, P., Rahimi, M., & Tafreshi, N. (2021). Response surface modelling of CO2 capture by ammonia aqueous solution in a microchannel. The Canadian Journal of Chemical Engineering, 99(2), 601-612
[3]        Bains, P., Psarras, P., & Wilcox, J. (2017). CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146-172.
[4]        Cheung, O., Bacsik, Z., Liu, Q., Mace, A., & Hedin, N. (2013). Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA. Applied energy, 112, 1326-1336.
[5]        Chu, F., Jon, C., Yang, L., Du, X., & Yang, Y. (2016). CO2 absorption characteristics in ammonia solution inside the structured packed column. Industrial & engineering chemistry research, 55(12), 3696-3709.
[6]        Gao, H., Xu, B., Han, L., Luo, X., & Liang, Z. (2017). Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column. AIChE Journal, 63(7), 3048-3057.
[7]        Koytsoumpa, E. I., Bergins, C., & Kakaras, E. (2018). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids, 132, 3-16.
[8]        Maqsood, K., Mullick, A., Ali, A., Kargupta, K., & Ganguly, S. (2014). Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies. Reviews in Chemical Engineering, 30(5), 453-477.
[9]        Venna, S. R., & Carreon, M. A. (2015). Metal organic framework membranes for carbon dioxide separation. Chemical engineering science, 124, 3-19.
[10]      Lu, J.-G., Zheng, Y.-F., & He, D.-L. (2006). Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column. Separation and purification technology, 52(2), 209-217.
[11]      Chen, P. C., & Lin, S. Z. (2016). Absorption and Mass Transfer of CO2 in Monoethanolamine Solution. Paper presented at the Materials Science Forum.
[12]      Haji-Sulaiman, M., Aroua, M. K., & Benamor, A. (1998). Analysis of equilibrium data of CO2 in aqueous solutions of diethanolamine (DEA), methyldiethanolamine (MDEA) and their mixtures using the modified Kent Eisenberg model. Chemical engineering research and design, 76(8), 961-968.
[13]      Jonassen, Ø., Kim, I., & Svendsen, H. F. (2014). Heat of absorption of carbon dioxide (CO2) into aqueous N-methyldiethanolamine (MDEA) and N, N-dimethylmonoethanolamine (DMMEA). Energy Procedia, 63, 1890-1902.
[14]      Kohl, A. L., & Nielsen, R. (1997). Gas purification: Elsevier.
[15]      Heidaryan, E. (2019). A note on model selection based on the percentage of accuracy-precision. Journal of Energy Resources Technology, 141(4).
[16]      Niu, H., Pan, L., Su, H., & Wang, S. (2009). Effects of Design and Operating Parameters on CO2 Absorption in Microchannel Contactors. Industrial & Engineering Chemistry Research, 48(18), 8629-8634. doi:10.1021/ie8018966
[17]      Vásquez, R. T., Jimenez Esteller, L., & Bojarski, A. D. (2008). Multiscale modeling approach for production of perfume microcapsules. Chemical Engineering & Technology: Industrial ChemistryPlant EquipmentProcess EngineeringBiotechnology, 31(8), 1216-1222.
[18]      Fair, J. R., Seibert, A. F., Behrens, M., Saraber, P., & Olujic, Z. (2000). Structured packing performance experimental evaluation of two predictive models. Industrial & engineering chemistry research, 39(6), 1788-1796.
[19]      Jahromi, P. F., Karimi-Sabet, J., & Amini, Y. (2018). Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: An optimized separation approach. Chemical Engineering Journal, 334, 2603-2615.
[20]      Marsousi, S., Karimi-Sabet, J., Moosavian, M. A., & Amini, Y. (2019). Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chemical Engineering Journal, 356, 492-505.
[21]      Sadeghi, A., Amini, Y., Saidi, M. H., & Chakraborty, S. (2014). Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. Analytica chimica acta, 838, 64-75.
[22]      Fu, K., Rongwong, W., Liang, Z., Na, Y., Idem, R., & Tontiwachwuthikul, P. (2015). Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA–MeOH in an absorber. Chemical Engineering Journal, 260, 11-19. doi:https://doi.org/10.1016/j.cej.2014.08.064
[23]      Rashidi, H., & Sahraie, S. (2021). Enhancing carbon dioxide absorption performance using the hybrid solvent: Diethanolamine-methanol. Energy, 221, 119799.
[24]      Rashidi, H., Rasouli, P., & Azimi, H. (2022). A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study. Energy, 244, 122711. doi:https://doi.org/10.1016/j.energy.2021.122711
[25]      Choubtashani, S., & Rashidi, H. (2023). CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling. Energy, 267, 126447. doi:https://doi.org/10.1016/j.energy.2022.126447
[26]      Dey, A., & Aroonwilas, A. (2009). CO2 absorption into MEA-AMP blend: Mass transfer and absorber height index. Energy Procedia, 1(1), 211-215.
[27]      Aroonwilas, A., & Veawab, A. (2004). Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column. Industrial & engineering chemistry research, 43(9), 2228-2237.
[28]      Chen, P.-C. (2012). Absorption of carbon dioxide in a bubble-column scrubber. Greenhouse Gases-Capturing, Utilization and Reduction, 95-112.
[29]      Kuntz, J., & Aroonwilas, A. (2009). Mass-transfer efficiency of a spray column for CO2 capture by MEA. Energy Procedia, 1(1), 205-209.
[30]      Chen, X. (2011). Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines. UT Electronic Theses and Dissertations