تأثیر دما در ازدیاد برداشت نفت از محیط متخلخل دوبعدی حین تزریق سیال بسپاری پلی‌آکریل‌آمید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه تبریز

2 دانشیار مهندسی شیمی و نفت، دانشگاه تبریز

چکیده

تزریق آب داغ همواره یکی از سازوکارهای رایج در افزایش میزان بازیابی نفت از مخازن است؛ اما امروزه از روش‌های نوین ازدیاد برداشت برای بازیافت نفت استفاده می‌شود که یکی از این روش‌ها، سیلاب‌زنی محلول‌های بسپاری درون مخازن است. هدف از این تحقیق، بررسی فرایند بهبود بازیافت نفت گران‌رو با تزریق آب مقطر و محلول بسپاری پلی‌آکریل‌آمید از یک محیط متخلخل دو بعدی به‌صورت تجربی است. برای مطالعۀ الگوهای جریان حین تزریق سیال پایه و محلول بسپاری، تزریق سیالات جابه‌جاکننده در دبی ثابت 4mL/min انجام گرفت. هم‌چنین، برای بررسی اثر دمای سیال تزریقی در جابه‌جایی سیال- سیال و بهبود بازده بازیابی نفت، سیالات جابه‌جاکننده در دما­های 25 و 90 درجه سلسیوس تزریق شدند. نتایج مطالعۀ حاضر نشان داد که با افزودن پلی‌آکریل‌آمید به آب، گران‌روی سیال جابه‌جاکننده بهمیزان قابل توجهی افزایش پیدا کرده که منجربه افزایش عدد مویینگی شده و این امر سبب بهبود بازیافت نفت تا 2/65% هنگام تزریق محلول پلی‌آکریل‌آمید 5000 پی‌پی‌ام در دمای محیط می شود. هم‌چنین، افزایش دما با کاهش نسبت تحرک‌پذیری سیالات جابه‌جاشونده و جابه‌جاکننده، میزان برداشت نفت با تزریق محلول بسپاری 5000 پی‌پی‌ام تا 4/66% افزایش پیدا می کند که این مقدار، بیشترین میزان بازیافت نفت پایه با تزریق سیالات جابه‌جاکننده در مطالعۀ حاضر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Temperature on Enhanced Oil Recovery from aTwo-Dimensional Porous Medium when Injecting Polyacrylamide Polymer Solution

نویسندگان [English]

  • M. Zarei Ghobadlou 1
  • M. Ahmadlouydarab 2
  • N. Asadzadeh 1
1 M. Sc. Student of Chemical Engineering, University of Tabriz
2 Associate Professor of Chemical & Petroleum Engineering, University of Tabriz
چکیده [English]

Hot water injection is one of the common mechanisms to enhance the oil recovery from reservoirs. But, novel methods of enhanced oil recovery are used for oil recovery, and one of them is flooding polymeric solutions inside the reservoirs. The main purpose of this experimental study is to investigate the process of enhancing the recovery of viscose oil by injecting distilled water and polyacrylamide-based polymeric solution from a two-dimensional porous medium. In order to study the flow patterns during the injection of base fluid and polymer solution, injection of displacing fluids was performed at a constant flowrate of 0.4 mL/min. Also, to investigate the effect of injected fluid temperature on fluid-fluid displacement and enhanced oil recovery efficiency, displacing fluids were injected at temperatures of 25°C and 90°C. The results showed that by adding polyacrylamide to water, the viscosity of the displacing fluid increased significantly, which led to an increase in the capillary number, and enhanced oil recovery up to 65.2% when injected with 0.5%wt polyacrylamide at ambient temperature. Also, increasing the temperature and reducing the mobility ratio of displacing fluids and base oil, the efficiency of oil recovery by injecting 5000ppm polymer solution increased to 66.4%, which is the maximum rate of base oil recovery by injecting displacing fluids in present study.

کلیدواژه‌ها [English]

  • Enhanced Oil Recovery
  • 2D Porous Medium
  • Polyacrylamide
  • Temperature
 
[1]        Deffeyes, K. S. (2009). Hubbert's peak: the impending world oil shortage. Princeton university press.
[2]        Reynolds, D. B. (2004). Scarcity and growth considering oil and energy, An Alternative Neo-Classical View. Oil, Gas & Energy Law, 2(2).
[3]        Rezaveisi, M., Rostami, B., Kharrat, R., Ayatollahi, S., & Ghotbi, C. (2010). Experimental investigation of tertiary oil gravity drainage in fractured porous media. Special Topics & Reviews in Porous Media: An International Journal, 1(2).
[4]        Makhlouf, J. (1983). Encyclopedia of Chemical Technology.
[5]        Hemmati-Sarapardeh, A., Aminshahidy, B., Pajouhandeh, A., Yousefi, S. H., & Hosseini-Kaldozakh, S. A. (2016). A soft computing approach for the determination of crude oil viscosity: Light and intermediate crude oil systems. Journal of the Taiwan Institute of Chemical Engineers, 59, 1-10. https://doi.org/10.1016/j.jtice.2015.07.017
[6]        Hemmati-Sarapardeh, A., Khishvand, M., Naseri, A., & Mohammadi, A. H. (2013). Toward reservoir oil viscosity correlation. Chemical Engineering Science, 90, 53-68. https://doi.org/10.1016/j.ces.2012.12.009
[7]        Hemmati-Sarapardeh, A., Shokrollahi, A., Tatar, A., Gharagheizi, F., Mohammadi, A. H., & Naseri, A. (2014). Reservoir oil viscosity determination using a rigorous approach. Fuel, 116, 39-48. https://doi.org/10.1016/j.fuel.2013.07.072
[8]        Sarapardeh, A. H., Kiasari, H. H., Alizadeh, N., Mighani, S., & Kamari, A. (2013, March). Application of fast-SAGD in naturally fractured heavy oil reservoirs: a case study. In SPE middle east oil and gas show and conference (pp. SPE-164418). SPE. https://doi.org/10.2118/164418-MS
[9]        Vizika, O., Avraam, D. G., & Payatakes, A. C. (1994). On the role of the viscosity ratio during low-capillary-number forced imbibition in porous media. Journal of colloid and interface science, 165(2), 386-401. https://doi.org/10.1006/jcis.1994.1243
[10]      Prats, M. (1982). Thermal recovery.
[11]      Alvarado, V., & Manrique, E. (2010). Enhanced oil recovery: an update review. Energies, 3(9), 1529-1575. https://doi.org/10.3390/en3091529
[12]      Santos, R. G. D., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31, 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853
[13]      Shafiai, S. H., & Gohari, A. (2020). Conventional and electrical EOR review: the development trend of ultrasonic application in EOR. Journal of Petroleum Exploration and Production Technology, 10, 2923-2945. https://doi.org/10.1007/s13202-020-00929-x
[14]      Notz, P. K., Prieditis, J., & Stevens, J. F. (1997). U.S. Patent No. 5,632,336. Washington, DC: U.S. Patent and Trademark Office.
[15]      Green, D. W., & Willhite, G. P. (1998). Enhanced oil recovery (Vol. 6, pp. 143-154). Richardson, TX: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers.
[16]      Chierici, G. L. (2012). Principles of Petroleum Reservoir Engineering: Volume 2 (Vol. 2). Springer Science & Business Media.
[17]      Guerrero, F., Bryan, J., & Kantzas, A. (2021). Visualization of chemical heavy oil EOR displacement mechanisms in a 2D system. Energies, 14(4), 950. https://doi.org/10.3390/en14040950
[18]      Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A. M., & Junin, R. (2022). Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel, 312, 122867. https://doi.org/10.1016/j.fuel.2021.122867
[19]      Afolabi, F., Mahmood, S. M., Yekeen, N., Akbari, S., & Sharifigaliuk, H. (2022). Polymeric surfactants for enhanced oil recovery: A review of recent progress. Journal of Petroleum Science and Engineering, 208, 109358. https://doi.org/10.1016/j.petrol.2021.109358
[20]      Joshi, D., Maurya, N. K., Kumar, N., & Mandal, A. (2022). Experimental investigation of silica nanoparticle assisted Surfactant and polymer systems for enhanced oil recovery. Journal of Petroleum Science and Engineering, 216, 110791. https://doi.org/10.1016/j.petrol.2022.110791
[21]      Malmir, P., Hashemi, A., & Soltani Solgani, B. (2019). Experimental study of polymer injection on enhanced oil recovery from heavy oil reservoirs and determination of optimum injection concentration. Journal of Petroleum Research, 29(98-3), 120-130.
[22]      Deng, P., Xu, Z., & Feng, Y. (2013). Sensitive determination of bisphenol A in plastic products by derivative voltammetry using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan. International Journal of Environmental Analytical Chemistry, 93(11), 1116-1131. https://doi.org/10.1080/03067319.2012.702276
[23]      Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S. (2019). An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 9, 171-202. https://doi.org/10.1007/s40089-019-0272-8
[24]      Mai, A., & Kantzas, A. (2007, June). Heavy oil waterflooding: effects of flow rate and oil viscosity. In PETSOC Canadian International Petroleum Conference (pp. PETSOC-2007). PETSOC. https://doi.org/10.2118/2007-144
[25]      Xu, W., Ok, J. T., Xiao, F., Neeves, K. B., & Yin, X. (2014). Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Physics of Fluids, 26(9). https://doi.org/10.1063/1.4894071
[26]      Lenormand, R. (1989). Flow through porous media: limits of fractal patterns. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 423(1864), 159-168. https://doi.org/10.1098/rspa.1989.0048
[27]      Golmohammadi, S., Ding, Y., Kuechler, M., Reuter, D., Schlueter, S., Amro, M., & Geistlinger, H. (2021). Impact of wettability and gravity on fluid displacement and trapping in representative 2D micromodels of porous media (2D sand analogs). Water Resources Research, 57(10), e2021WR029908. https://doi.org/10.1029/2021WR029908
[28]      Karadimitriou, N. K., & Hassanizadeh, S. M. (2012). A review of micromodels and their use in two-phase flow studies. Vadose Zone Journal, 11(3). https://doi.org/10.2136/vzj2011.0072
[29]      Rostami, S., Ahmadlouydarab, M., & Haddad, A. S. (2022). Effects of hot nanofluid injection on oil recovery from a model porous medium. Chemical Engineering Research and Design, 186, 451-461. https://doi.org/10.1016/j.cherd.2022.08.013
[30]      Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T., & Salino, P. (2014). Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2006), 20120320. https://doi.org/10.1098/rsta.2012.0320
[31] Lv, M., & Wang, S. (2015). Pore-scale modeling of a water/oil two-phase flow in hot water flooding for enhanced oil recovery. RSC advances, 5(104), 85373-85382. https://doi.org/10.1039/C5RA12136A