مروری بر اصلاح غشاهای زئولیتی با روش غوطه‌وری در محلول بسپاری: بهبود عملکرد جداسازی دی‌اکسیدکربن

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسى ارشد مهندسى شیمى، دانشگاه صنعتى سهند تبریز

2 استادیار مهندسى شیمى، دانشگاه صنعتى سهند تبریز

3 استاد مهندسى شیمى، دانشگاه صنعتى سهند تبریز

چکیده

در این مقالۀ مروری ضرورت جداسازی گاز دیاکسیدکربن بیان و روش ­های جداسازی آن معرفی شدهاست. فناوری غشایی بهعنوان روش مناسب در جداسازی دیاکسیدکربن مطرح است. از میان غشاها، غشاهای زئولیتی SSZ-13، Si-CHA، SAPO-34 و DD3R بهترین عملکرد را در جداسازی دیاکسیدکربن دارند. در این بین غشای DD3R بهترین هدف برای تحقیقات آتی است؛ ولی تشکیل حفره‌های غیرزئولیتی در غشاهای زئولیتی باعث کاهش عملکرد می­ شود. روش­ های رسوب ترکیبات کربن دار و ایجاد کک، استفادهاز عامل­ های جفت­ شوندۀ سیلانی، رسوب شیمیایی در فاز بخار، رسوب شیمیایی در فاز مایع و غوطه ­وری مهم‌ترین روش های اصلاح غشاهای زئولیتی هستند. روش غوطه‌وری بهعلت سادگی فرایند و قابلیت استفاده برای طیف گسترده ­ای از مواد، روش مؤثری در اصلاح سطح است. از بین مواد مختلف مورد استفاده برای انجام عملیات اصلاح، بسپارها به‌دلیل فرایند­پذیری مطلوب، عملکرد مناسبی داشته ­اند. از بین بسپارها، پلیدیمتیل سیلوکسان (PDMS) عملکرد بهتری در اصلاح لایه ­های زئولیتی نشان داده و توانسته عملکرد غشای زئولیتی DD3R را به‌طور چشمگیری افزایش دهد. مهم‌ترین عوامل مؤثر بر فرایند اصلاح سطح غشاهای زئولیتی با روش غوطه وری شامل دمای انتقال شیشهای بسپار (Tg)، خاصیت اتصال عرضی، نوع حلال و دمای انحلال، غلظت محلول بسپاری، عبوردهی و انتخابگری مادۀ بسپاری نسبتبه گازهای مورد نظر است. بررسی این متغیرها نشان می­ دهد که بسپارهای پلاستیکی ازجمله سلولز استات (CA)، پلی‌کربنات (PC) و بسپار ترموپلاستیک الاستومر پلی‌اتر بلاکآمید (PEBA) بهعنوان بسپار مؤثر بر اصلاح سطح غشاهای زئولیتی با هدف جداسازی دی­اکسیدکربن هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on Modification of Zeolite Membranes by Immersion Method in Polymer Solution: Improvement of Carbon Dioxide Separation Performance

نویسندگان [English]

  • H. Javadi 1
  • M. J. Vaezi 2
  • A. Babaluo 3
1 M. Sc. in Chemical Engineering, Sahand University of Technology
2 Assistant Professor of Chemical Engineering, Sahand University of Technology
3 Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

In this review article, the necessity of carbon dioxide separation, and its separation methods are introduced. Membrane technology is considered as the best method in carbon dioxide separation. Among the membranes, SSZ-13, Si-CHA, SAPO-34 and DD3R zeolite membranes have the best performance in carbon dioxide separation. Meanwhile, the DD3R membrane is the best target for future research, but the formation of non-zeolite pores causes a decrease in their performance. The methods of carbonaceous components deposition and creating coke, silane coupling agents, chemical vapor deposition, chemical liquid deposition and dip-coating are the important methods for zeolite membrane modification. The dip-coating is an effective method for a wide range of materials in surface modification due to the simplicity of the process. Among the different materials used for modification, polymers have performed well due to their favorable processability. Among the polymers, poly dimethyl siloxane (PDMS) has shown better performance in modification of zeolite layers, and has been able to significantly increase the performance of DD3R zeolite membrane.
The important effective parameters in the modification process of the zeolite membranes by dip-coating method include polymer glass transition temperature (Tg), cross-linking property, type of solvent and dissolution temperature, concentration of polymer solution, permeability and selectivity of the polymer material over to the target gases. The study of these parameters shows that plastic polymers such as cellulose acetate (CA), polycarbonate (PC) and thermoplastic elastomer polyether block amide (PEBA) are effective polymers in the surface modification of zeolite membranes with the aim of separating carbon dioxide.

کلیدواژه‌ها [English]

  • Carbon Dioxide Separation؛ Zeolite Membrane
  • Non-zeolite Pores
  • Surface Modification of Membrane Layer
  • Immersion Method
  • Polymer Materials

 

[1]        Behbahani, R. M., & Jomehkian, A. (2017). Membrane separation process (1st ed.). Ayez Publications. In Persian.
[2]        Mubashir, M., Fong, Y. Y., Keong, L. K., & Sharrif, M. A. B. (2012). Synthesis and performance of Deca-Dodecasil 3 Rhombohedral (DDR) type zeolite membrane in CO2 separation–A Review. Asean Journal of Chemical Engineering, 14, 48-57.
[3]        Vo, P. N. X., Phan, P. D., Ngo, P. T., Le-Phuc, N., Tran, T. V., Luong, T. N., Wotzka, A., Seeburg, D., & Wohlrab, S. (2019). Memory effect in DDR zeolite powder and membrane synthesis. Microporous and Mesoporous Materials, 279, 142-152.
[4]        Zhang, Ch., Peng, L., Jiang, J., & Gu, X. (2017). Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review. Chinese journal of chemical engineering, 25(11), 1627-1638.
[5]        Algieri, C., & Drioli, E. (2021). Zeolite membranes: Synthesis and applications. Separation and Purification Technology, 278, 119295.
[6]        Pabby, A. K., Rizvi, S. S. H., & Sastre, A. M. (2009). Hand book of Membrane Separations (1st ed.). CRC press, Taylor and Francis Group, Boca Raton.
[7]        Van Bekkum, H., Flanigan, E. M., Jacobs, P. A., & Jansen, J. C. (2001). Introduction in Zeolite Science and Practice, Studies in Surface Science and Catalysis (2nd ed.). Elsevier.
[8]        Coronas, J., & Santamaria, J. (2008). Separations using zeolite membranes. Separation and Purification Methods, 28, 127–177.
[9]        Derbe, T., Temesgen, Sh., & Bitew, M. (2021). A short review on synthesis, characterization, and applications of zeolites. Advances in Materials Science and Engineering, 2021, 6637898.
[10]      Maghsoudi, H. (2016). Defects of zeolite membranes: Characterization, modification and post-treatment techniques. Separation & Purification Reviews, 45(3), 169-192.
[11]      Verweij, H., Lin, Y. S., & Dong, J. (2006). Microporous silica and zeolite membranes for hydrogen purification. MRS bulletin, 31(10), 756-764.
[12]      Wang, L., Zhang, Ch., Gao, X., Peng, L., Jiang, J., & Gu, X. (2017). Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature. Journal of Membrane Science, 539, 152-160.
[13]      Sakai, M., Hori, H., & Matsukata, M. (2022). Alkaline-treatment with pore-filling agent for defect-healing of zeolite membrane. Microporous and Mesoporous Materials, 336, 111901.
[14]      Yan, Y., Davis, M. E., & Gavalas, G. R. (1997). Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment. Journal of membrane science, 123(1), 95-103.
[15]      Sano, T., Hasegawa, M., Ejiri, Sh., Kawakami, Y., & Yanagishita, H. (1995). Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent. Microporous Materials, 5(3), 179-184.
[16]      Kosinov, N., Sripathi, V. G. P., & Hensen, E. J. M. (2014). Improving separation performance of high-silica zeolite membranes by surface modification with triethoxyfluorosilane. Microporous and Mesoporous Materials, 194, 24-30.
[17]      Aydani, A., Maghsoudi, H., Brunetti, A., & Barbieri, G. (2021). Silica sol gel assisted defect patching of SSZ-13 zeolite membranes for CO2/CH4 separation. Separation and Purification Technology, 277, 119518.
[18]      Mu, Y., Chen, H., Xiang, H., Lan, L., Shao, Y., Fan, X., & Hardacre, Ch. (2019). Defects-healing of SAPO-34 membrane by post-synthesis modification using organosilica for selective CO2 separation. Journal of Membrane Science, 575, 80-88.
[19]      Choi, J., Jeong, H. K., Snyder, M. A., Stoeger, J. A., Masel, R. I., & Tsapatsis M. (2009). Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science, 325(5940), 590-593.
[20]      Nagasawa, H., Kanezashi, M., Yoshioka T., & Tsuru, T. (2016). Plasma-enhanced chemical vapor deposition of amorphous carbon molecular sieve membranes for gas separation. RSC Advances, 6(64), 59045-59049.
[21]      Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., Gleason, K. K., Choi, Y. S., Hong, B. H., & Liu, Zh. (2021). Chemical vapor deposition. Nature Reviews Methods Primers, 1, 5.
[22]      Hong, Zh., Zhang, Ch., Gu, X., Jin, W., & Xu, N. (2011). A simple method for healing nonzeolitic pores of MFI membranes by hydrolysis of silanes. Journal of membrane science, 366(1-2),427-435.
[23]      Zhou, R., Wang, H., Wang, B., Chen, I., Li, Sh., & Yu, M. (2015). Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 54(30), 7516-7523.
[24]      Eslami, A., Juibari, A. M., Hosseini, S. Gh., & Abbasi, M. (2017). Synthesis and Characterization of CuO Nanoparticles by the Chemical Liquid Deposition Method and Investigation of Its Catalytic Effect on the Thermal Decomposition of Ammonium Perchlorate. Central European Journal of Energetic Materials, 14(1), 152-168.
[25]      Zhang, H., Shao, Sh., Luo, M., & Xiao, R. (2017). The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 244, 726-732.
[26]      Gibbons, W. T., Zhang, Y., Falconer, J. L., & Noble, R. D. (2010). Inhibiting crystal swelling in MFI zeolite membranes. Journal of Membrane Science, 357(1-2), 54-61.
[27]      Karimi, S., Korelskiy, D., Yu, L., Mouzon, J., Khodadadi, A. A., Mortazavi, Y., Esmaeili, M., & Hedlund, J. (2015). A simple method for blocking defects in zeolite membranes. Journal of Membrane Science, 489, 270-274.
[28]      Zhang, Y., Du, P., Shi, R., Hong, Zh., Zhu, X., Gao, B., & Gu, X. (2020). Blocking defects of zeolite membranes with WS2 nanosheets for vapor permeation dehydration of low water content isopropanol. Journal of Membrane Science, 597, 117625.
[29]      Li, Y., & Zhang, B. (2020). Defects reparation and surface hydrophilic modification of zeolite beta membranes with spherical polyelectrolyte complex nanoparticles via vacuum wiping deposition technique. Journal of Membrane Science, 602, 117977.
 [30]     Yimsiri, P., & Mackley, M. R. (2006). Spin and dip coating of light-emitting polymer solutions: Matching experiment with modelling. Chemical Engineering Science, 61(11), 2496-3505.
[31]      Matsuda, H., Yanagishita, H., Negishi, H., Kitamoto, D., Ikegami, T., Haraya, K., Nakane, T., Idemoto, Y., Koura, N., & Sano, T. (2002). Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating. Journal of Membrane Science, 210(2), 433-437.
[32]      Vaezi, M. J., Babaluo, A. A., & Maghsoudi H. (2018). Separation of CO2 and N2 from CH4 using modified DD3R zeolite membrane: A comparative study of synthesis procedures. Chemical Engineering Research and Design, 134, 347-358.
[33]      Chiu, W. V., Park, I. S., Shqau, K., White, J. C., Schillo, M. C., Ho, W. S. W., Dutta, P. K., & Verweij, H. (2011). Post-synthesis defect abatement of inorganic membranes for gas separation. Journal of membrane science, 377(1-2), 182-190.
[34]      Zhou, Zh., & Nair, S. (2013). US Pat. 2013/0064747 A1, Georgia Tech Research Corporation.
[35]      Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C., & May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94, 123-154.
[36]      Vaezi M. J. (2018). DD3R Zeolite Membrane Preparation on Seeded Nanostructure Ceramic Support with the Synthesized Nanoparticles and Performance Evaluation in Separation of N2/CH4 [Unpublished doctoral dissertation]. Sahand University of Technology.
[37]      Tara, N., Shamair, Z., Habib, N., Craven, M., Bilad, M. R., Usman, M., Tu, X., & Khan, A. L. (2022). Simultaneous increase in CO2 permeability and selectivity by BIT-72 and modified BIT-72 based mixed matrix membranes. Chemical Engineering Research and Design, 178, 136-147.
[38]      Li, N. N., Fane A. G., Winston Ho, W. S., & Matsuura, T. (2008). Advanced membrane technology and applications. John Wiley & Sons.
[39]      Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 48(10), 4638-4663.
[40]      Campbell, D., Pethrick, R. A., & White, J. R. (2000). Polymer characterization: physical techniques (2nd ed.). CRC press, Taylor & Francis Group.
[41]      Roberson, C. (2019). Cellulose Acetate: Properties, Uses and Preparation (Chemistry Research and Applications). Nova Science Pub Inc, 283.
[42]      Lexan sheet technical manual (PDF). SABIC. 2009. Archived from the original (PDF) on 2015-03-16. Retrieved 2015-07-18.
[43]      Mulder, M. (1996). Basic Principles of Membrane Technology. (2nd ed.). Springer.
[44]      Legrand, D. G., & Bendler, J. T. (1999). Handbook of Polycarbonate Science and Technology. (1st ed.). CRC Press, Taylor & Francis Group.
[45]      Murali, R. S., Kumar, K. P., Ismail, A. F., & Sridhar, S. (2014). Nanosilica and H-Mordenite incorporated Poly (ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 197, 291-298.
[46]      Carson, C., & Sik, R. (2010). MATERIALS-Laser Machining Polyether Block Amide Tubing-Material and techniques to simplify catheter manufacture. European Medical Device Technology, 1(4), 24.
[47]      McKeen, L. W. (2010). Fatigue and tribological properties of plastics and elastomers. (2nd ed.). Elsevier.
[48]      Sole, B. B., Seshadri, G., Tyagi, A. K., & Rattan, S. (2018). Preparation of antibacterial and antifungal breathable polyether block amide/chloropropane diol membranes via solution casting. Journal of Applied Polymer Science, 135(17), 46097.
[49]      Isanejad, M., Azizi, N., & Mohammadi, T. (2017). Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. Journal of Applied Polymer Science, 134(9), 44531.
[50]      Sridhar, S., Suryamurali, R., Smitha, B., & Aminabhavi, T. M. (2007). Development of crosslinked poly (ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 267-274.