عوامل مؤثر بر فعالیت الکتروشیمیایی لایه‌کاتالیست و عملکرد پیل سوختی پلیمری

نوع مقاله : مقاله مروری

نویسنده

استادیار مهندسی شیمی، دانشگاه ارومیه

چکیده

در سالهای اخیر پیل‌های سوختی به‌دلیل بازده انرژی بالا و آلودگی در حد صفر، توجه بسیاری را به خود جلب کرده‌اند. الکتروکاتالیستها اجزای کلیدی در پیل‌های سوختی با دمای پایین نظیر پیل‌های سوختی پلیمری هستند. تهیۀ کاتالیست با بازده بالا، پایدار و بادوام یکی از مراحل کلیدی برای توسعه و تجاریسازی پیل‌های سوختی پلیمری است. کاتالیزورهای نگهداشتهشده برروی کربن سیاه با مساحت بالا بهطور گسترده در سلولهای سوختی پلیمری استفاده میشوند. با این حال، خوردگی کربن سیاه یکی از دلایل اصلی تخریب عملکرد و مسائل دوام پیل‌های سوختی پلیمری در شرایط با پتانسیل بالا شناخته شدهاست. بنابراین نیاز به مواد نگهدارندۀ جای‌گزین با خواص فیزیکی و مکانیکی برجسته برای انجام واکنش موفقیتآمیز در لایه‌کاتالیست و ایجاد طول عمر بیشتر برای الکتروکاتالیستها اجتنابناپذیر است. ظهور فناوری نانو راه‌های جدیدی را برای توسعۀ مواد برای پیل‌های سوختی پلیمری باز کردهاست. این مطالعه عملکرد پیل‌های سوختی پلیمری را با انواع مواد نانوساختار به‌عنوان مادۀ نگهدارندۀ الکتروکاتالیست ارائه می‌کند و در آن فعالیت الکتروشیمیایی بهبودیافتۀ الکتروکاتالیستهای نانوساختار برجسته شدهاست.

کلیدواژه‌ها


عنوان مقاله [English]

Factors Affecting the Electrochemical Activity of Catalyst Layer and Performance of Polymer Fuel Cell

نویسنده [English]

  • M. Yaldagard
Assistant Professor of Chemical Engineering, Urmia University
چکیده [English]

In recent years, fuel cells have attracted considerable attention due to their high energy efficiency with zero emissions. Electrocatalysts are some of the key materials used in low-temperature fuel cells such as the polymer electrolyte membrane fuel cell(PEM). Creating high-performance and stable/durable catalysts is widely recognized as a key step for the further development and commercialization of PEMs. Catalysts supported on high surface area carbon black are widely used in PEMs. However, the corrosion of carbon black has been recognized as one of major causes of performance degradation and durability issues of PEMs under high-potential conditions. So the need for alternative supports with outstanding physical and mechanical properties to carry out the successful reaction in catalyst layer and give a longer lifetime for the electrocatalysts is inevitable. The emergence of nanothechnology has opened up new avenues of materials development for PEMs. This study presents the PEMs performance with a variety of nanostructured based materials as a catalyst support. The improved electrochemical activity of the nanostructured electrocatalysts are highlighted.
 

کلیدواژه‌ها [English]

  • Electrochemical Activity
  • Catalyst layer
  • Performance
  • Nanostructures
  • Polymer Fuel Cells
[1]        Zhang, J., "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications", Springer, Canada, pp. 1-1137, (2008).
[2]        Kaur, G., "PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application", Elsevier, Canada, p. 584, (2021).
[3]        Barbir, F., "PEM fuel cells: theory and practice", Academic press, UK, pp.17-30, (2013).
[4]        Zhang, J., Wu, J., Zhang, H., Zhang, J., "PEM fuel cell testing and diagnosis", Newnes, UK, pp. 1-600, (2013).
[5]        Wang, H., Yuan, X. -Z., Li, H., "PEM fuel cell diagnostic tools", CRC press, US, pp. 1-578 (2019).
[6]        Qi, Z., Lefebvre, M. C., Pickup, P. G., "Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers", Journal of Electroanalytical Chemistry, 459: pp. 9-14, (1998).
[7]        Gasteiger, H. A., Kocha, S. S., Sompalli, B., Wagner, F. T., "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs", Applied Catalysis B: Environmental, 56: pp. 9-35, (2005).
[8]        Huang, K. -L., Lai, Y. -C., Tsai, C. -H., "Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells", Journal of Power Sources, 156:
pp. 224-231, (2006).
[9]        Gamburzev, S., Appleby, A. J., "Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)", Journal of Power Sources, 107: pp. 5-12, (2002).
[10]      Mukerjee, S., Srinivasan, S., Appleby, A. J., "Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells", Electrochimica Acta, 38: pp. 1661-1669, (1993).
[11]      Kangasniemi, K. H., Condit, D., Jarvi, T., "Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions", Journal of the Electrochemical Society, 151:
pp. E125-E132, (2004).
[12]      Liu, J., Zhou, Z., Zhao, X., Xin, Q., Sun, G., Yi, B., "Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test", Physical Chemistry Chemical Physics, 6: pp. 134-137, (2004).
[13]      Narayanan, R., El-Sayed, M. A., "Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution", Nano Letters, 4: pp. 1343-1348, (2004).
[14]      Wang, Z. L., "Nanowires and nanobelts: materials, properties and devices: volume 1: metal and semiconductor nanowires", Vol. 1. Springer, (2005).
[15]      Kim, H., Popov, B. N., "Development of novel method for preparation of PEMFC electrodes", Electrochemical and solid-state letters, 7:
pp. A71-A74, (2004).
[16]      Wan, C. -H., Lin, M. -T., Zhuang, Q. -H., Lin, C. -H., "Preparation and performance of novel MEA with multi catalyst layer structure for PEFC by magnetron sputter deposition technique", Surface and Coatings Technology, 201: pp. 214-222, (2006).
[17]      Piccolo, L., Piednoir, A., Bertolini, J. -C., "Absorption and oxidation of hydrogen at Pd and
Pd–Au (111) surfaces", Surface science, 600: pp. 4211-4215, (2006).
[18]      Hara, Y., Minami, N., Itagaki, H., "Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation", Applied Catalysis A: General, 323: pp. 86-93, (2007).
[19]      Levy, R., Boudart, M., "Platinum-like behavior of tungsten carbide in surface catalysis", science, 181: pp. 547-549, (1973).
[20]      Ganesan, R., Lee, J. S., "Tungsten Carbide Microspheres as a Noble-Metal-Economic Electrocatalyst for Methanol Oxidation", Angewandte Chemie International Edition, 44: pp. 6557-6560, (2005).
[21]      Barnett, C., Burstein, G., Kucernak, A., Williams, K., "Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds", Electrochimica Acta, 42: pp. 2381-2388, (1997).
[22]      McIntyre, D., Burstein, G., Vossen, A., "Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide", Journal of Power Sources, 107: pp. 67-73, (2002).
[23]      Stancheva, M., Lazarov, D., "Oxidation of hydrogen on the catalyst surfaces obtained from amorphous
Ni− Cu− P alloys", Reaction Kinetics and Catalysis Letters, 61: pp. 103-110, (1997).
[24]      Doyle, M., Rajendran, G., Vielstich, W., Gasteiger, H., Lamm, A., "Handbook of Fuel Cells Fundamentals, Technology and Applications", Fuel cell technology and applications, 3, (2003).
[25]      Shim, J., Lee, C. -R., Lee, H. -K., Lee, J. -S., Cairns, E. J., "Electrochemical characteristics of Pt–WO 3/C and Pt–TiO 2/C electrocatalysts in a polymer electrolyte fuel cell", Journal of Power Sources, 102: pp. 172-177, (2001).
[26]      Liu, G., Zhang, H., Zhai, Y., Zhang, Y., Xu, D., Shao, Z.-g., "Pt 4 ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H 3 PO 4 doped PBI", Electrochemistry Communications, 9: pp. 135-141, (2007).
[27]      Savadogo, O., Beck, P., "Five Percent Platinum‐Tungsten Oxide‐Based Electrocatalysts for Phosphoric Acid Fuel Cell Cathodes", Journal of the Electrochemical Society, 143: pp. 3842-3846, (1996).
[28]      Mukerjee, S., Srinivasan, S., "Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells", Journal of Electroanalytical Chemistry, 357:
pp. 201-224, (1993).
[29]      Tamizhmani, G., Capuano, G., "Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy‐Oxide in Solid-Polymer-Electrolyte Fuel Cells", Journal of the Electrochemical Society, 141: pp. 968-975, (1994).
[30]      Costamagna, P., Srinivasan, S., "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects", Journal of Power Sources, 102: pp. 242-252, (2001).
[31]      Cao, D., Wieckowski, A., Inukai, J., Alonso-Vante, N., "Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur", Journal of the Electrochemical Society, 153: pp. A869-A874, (2006).
[32]      Lee, K., Zhang, L., Zhang, J., "Ternary non-noble metal chalcogenide (W–Co–Se) as electrocatalyst for oxygen reduction reaction", Electrochemistry Communications, 9: pp. 1704-1708, (2007).
[33]      Zhong, H., Chen, X., Zhang, H., Wang, M., Mao, S. S., "Proton exchange membrane fuel cells with chromium nitride nanocrystals as electrocatalysts", Applied Physics Letters, 91: pp. 163103, (2007).
[34]      Zhong, H., Zhang, H., Liang, Y., Zhang, J., Wang, M., Wang, X., "A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells", Journal of Power Sources, 164: pp. 572-577, (2007).
[35]      Reeve, R., Christensen, P., Dickinson, A., Hamnett, A., Scott, K., "Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation", Electrochimica Acta, 45: pp. 4237-4250, (2000).
[36]      Baez, V. B., Pletcher, D., "Preparation and characterization of carbon/titanium dioxide surfaces—the reduction of oxygen", Journal of Electroanalytical Chemistry, 382: pp. 59-64, (1995).
[37]      Bashyam, R., Zelenay, P., "A class of non-precious metal composite catalysts for fuel cells", Nature, 443: pp. 63-66, (2006).
[38]      Mohana Reddy, A. L., Rajalakshmi, N., Ramaprabhu, S., "Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells", Carbon, 46: pp. 2-11, (2008).
[39]      Faubert, G., Cote, R., Dodelet, J., "A new method to prepare non-noble metal based catalysts for the reduction of oxygen in polymer electrolyte fuel cells", in Proceedings-Electrochemical Society. Electrochemical Society, (1999).
[40]      Di Noto, V., Negro, E., "Synthesis, characterization and electrochemical performance of tri-metal Pt-free carbon nitride electrocatalysts for the oxygen reduction reaction", Electrochimica Acta, 55: pp. 1407-1418, (2010).
[41]      Imran Jafri, R., Sujatha, N., Rajalakshmi, N., Ramaprabhu, S., "Au–MnO2/MWNT and Au–ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell", International journal of hydrogen energy, 34: pp. 6371-6376, (2009).
[42]      Watanabe, M., Uchida, M., Motoo, S., "Preparation of highly dispersed Pt+ Ru alloy clusters and the activity for the electrooxidation of methanol", Journal of electroanalytical chemistry and interfacial electrochemistry, 229: pp. 395-406, (1987).
[43]      Bonnemann, H., Nagabhushana, K., "Advantageous fuel cell catalysts from colloidal nanometals", Journal of New Materials for Electrochemical Systems, 7: pp. 93-108, (2004).
[44]      Schmidt, T., Noeske, M., Gasteiger, H. A., Behm, R., Britz, P., Brijoux, W., Bönnemann, H., "Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements", Langmuir, 13: pp. 2591-2595, (1997).
[45]      Schmidt, T., Noeske, M., Gasteiger, H. A., Behm, R., Britz, P., Bönnemann, H., "PtRu alloy colloids as precursors for fuel cell catalysts a combined XPS, AFM, HRTEM, and RDE study", Journal of the Electrochemical Society, 145: pp. 925-931, (1998).
[46]      Reetz, M. T., Koch, M. G., "Water-soluble colloidal Adams catalyst: preparation and use in catalysis", Journal of The American Chemical Society, 121: pp. 7933-7934, (1999).
[47]      Hills, C. W., Mack, N. H., Nuzzo, R. G., "The size-dependent structural phase behaviors of supported bimetallic (Pt-Ru) nanoparticles", The Journal of Physical Chemistry B, 107: pp. 2626-2636, (2003).
[48]      Qiao, H., Kunimatsu, M., Fujiwara, N., Okada, T., "Novel heat-treatment process for performance enhancement of a microtubular DMFC anode prepared by impregnation-reduction method", Electrochemical and solid-state letters, 8: pp. A175-A178, (2005).
[49]      Nashner, M. S., Frenkel, A. I., Somerville, D., Hills, C. W., Shapley, J. R., Nuzzo, R. G., "Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles", Journal of The American Chemical Society, 120: pp. 8093-8101, (1998).
[50]      Kawaguchi, T., Sugimoto, W., Murakami, Y., Takasu, Y., "Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes", Journal of catalysis, 229: pp. 176-184, (2005).
[51]      Oh, H. -S., Oh, J. -G., Hong, Y. -G., Kim, H., "Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel
cell applications", Electrochimica Acta, 52: pp. 7278-7285, (2007).
[52]      Kongkanand, A., Vinodgopal, K., Kuwabata, S., Kamat, P. V., "Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation", The Journal of Physical Chemistry B, 110: pp. 16185-16188, (2006).
[53]      Liu, Z., Gan, L. M., Hong, L., Chen, W., Lee, J. Y., "Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells", Journal of Power Sources, 139: pp. 73-78, (2005).
[54]      Chu, Y. -Y., Wang, Z. -B., Gu, D. -M., Yin, G. -P., "Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation", Journal of Power Sources, 195: pp. 1799-1804, (2010).
[55]      Yu, W., Tu, W., Liu, H., "Synthesis of nanoscale platinum colloids by microwave dielectric heating", Langmuir, 15: pp. 6-9, (1999).
[56]      Komarneni, S., Li, D., Newalkar, B., Katsuki, H., Bhalla, A. S., "Microwave-polyol process for Pt and Ag nanoparticles", Langmuir, 18: pp. 5959-5962, (2002).
[57]      Tu, W., Liu, H., "Continuous synthesis of colloidal metal nanoclusters by microwave irradiation", Chemistry of materials, 12: pp. 564-567, (2000).
[58]      Godoi, D. R., Perez, J., Villullas, H. M., "Influence of particle size on the properties of Pt–Ru∕ C catalysts prepared by a microemulsion method", Journal of the Electrochemical Society, 154: pp. B474-B479, (2007).
[59]      Yaldagard, M., Seghatoleslami, N., Jahanshahi, M., "Oxygen reduction reaction activity improvement in Cu/PtPd nanocatalyst based on core-shell structured through electrochemical synthesis on porous gas diffusion electrodes in polymer electrolyte membrane fuel cells", in Journal of Nano Research. 2015. Trans Tech Publ.
[60]      Budevski, E. B., Staikov, G. T., Lorenz, W. J., "Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition", John Wiley & Sons, Germany, pp., (2008).
[61]      Pletcher, D., Greff, R., Peat, R., Peter, L., Robinson, J., "Instrumental methods in electrochemistry", Elsevier, (2001).
[62]      Sivakumar, P., Ishak, R., Tricoli, V., "Novel Pt–Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation: Part I. Preparation and physical characterization", Electrochimica Acta, 50: pp. 3312-3319, (2005).
[63]      Freitas, R., Oliveira, R., Santos, M., Bulhões, L., Pereira, E., "Preparation of Pt thin film electrodes using the Pechini method", Materials Letters, 60:
pp. 1906-1910, (2006).
[64]      Bayrakçeken, A., Smirnova, A., Kitkamthorn, U., Aindow, M., Türker, L., Eroğlu, İ., Erkey, C.,"Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique", Journal of Power Sources, 179: pp. 532-540, (2008).
[65]      Denis, M., Lalande, G., Guay, D., Dodelet, J., Schulz, R., "High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO", Journal of applied electrochemistry, 29: pp. 951-960, (1999).
[66]      Lalande, G., Denis, M., Guay, D., Dodelet, J., Schulz, R., "Structural and surface characterizations of nanocrystalline Pt–Ru alloys prepared by high-energy ball-milling", Journal of Alloys and Compounds, 292: pp. 301-310, (1999).
[67]      Denis, M., Gouerec, P., Guay, D., Dodelet, J., Lalande, G., Schulz, R., "Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells", Journal of applied electrochemistry, 30: pp. 1243-1253, (2000).
[68]      Tang, J. M., Jensen, K., Waje, M., Li, W., Larsen, P., Pauley, K., Chen, Z., Ramesh, P., Itkis, M. E., Yan, Y., "High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts", The Journal of Physical Chemistry C, 111: pp. 17901-17904, (2007).
[69]      Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D., Atanasoski, R., "High voltage stability of nanostructured thin film catalysts for PEM fuel cells", Journal of Power Sources, 161: pp. 1002-1011, (2006).
[70]      Chen, G., Bare, S. R., Mallouk, T. E., "Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells", Journal of the Electrochemical Society, 149: pp. A1092-A1099, (2002).
[71]      Chhina, H., Campbell, S., Kesler, O., "Thermal and electrochemical stability of tungsten carbide catalyst supports", Journal of Power Sources, 164: pp. 431-440, (2007).
[72]      Halalay, I. C., Merzougui, B., Carpenter, M. K., Swathirajan, S., Garabedian, G. C., Mance, A. M., Cai, M., Supports for fuel cell catalysts. 2009, Google Patents.
[73]      Yaldagard, M., Jahanshahi, M., Seghatoleslami, N., "Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen
electro-reduction in DMFC", Applied surface science, 317: pp. 496-504, (2014).
[74]      Van Dyke, L. S., Martin, C. R., "Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced", Langmuir, 6: pp. 1118-1123, (1990).
[75]      Cai, Z., Martin, C. R., "Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities", Journal of The American Chemical Society, 111: pp. 4138-4139, (1989).
[76]      Chen, Z., Xu, L., Li, W., Waje, M., Yan, Y., "Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells", Nanotechnology, 17: p. 5254, (2006).
[77]      Gupta, V., Miura, N., "Large-area network of polyaniline nanowires prepared by potentiostatic deposition process", Electrochemistry Communications, 7: pp. 995-999, (2005).
[78]      Hezarjaribi, M., Jahanshahi, M., Rahimpour, A., Yaldagard, M., "Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications", Applied surface science, (2014).
[79]      Nasrollahzadeh, M., Jahanshahi, M., Yaldagard, M., Salehi, M., "Synthesis, characterization and comparison of polythiophene–carbon nanocomposite materials as Pt electrocatalyst supports for fuel cell applications", Bulletin of Materials Science, 41: pp. 1-8, (2018).
[80]      Yaldagard, M., Nazoktabar, M., Jahanshahi, M., "Fabrication of Platinum/Polypyrol-Carbon Nanofiber Nanocomposite Electrocatalyst for Direct Methanol Fuel Cells", Journal of Nano Research. 2021. Trans Tech Publ.
[81]      Geim, A. K., Novoselov, K. S., "The rise of graphene", Nature materials, 6: pp. 183-191, (2007).
[82]      Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang, Y., Lin, Y., "Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction", Journal of Power Sources, 195: pp. 4600-4605, (2010).
[83]      Yaldagard, M., "Synthesis and electrochemical characterization of Graphene-Polyallylamine Nanocomposites as a New Supports of Pt Catalyst for Direct Methanol Fuel Cell Application", Iranian Journal of Hydrogen & Fuel Cell, 6: pp. 141-161, (2019).
[84]      Yaldagard, M., "Green in-situ fabrication of PtW/poly ethylen dioxy thiophene/graphene nanoplates/gas diffusion layer (PtW/PEDOT/GNP/GDL) electrode and its electrocatalytic property for direct methanol fuel cells application", Iranian Journal of Hydrogen & Fuel Cell, 6: pp. 39-58, (2019).
[85]      Yaldagard, M., Seghatoleslami, N., Jahanshahi, M., "Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell", Applied surface science, 315: pp. 222-234, (2014).
[86]      Yaldagard, M., "Buckypaper-based catalytic electrode containing graphene nanoplates and ZrO2 nanorod composite to improve PEMFC performance", Iranian Journal of Hydrogen & Fuel Cell, 5: pp. 57-69, (2019).
[87]      Saha, M. S., Li, R., Cai, M., Sun, X., "Nanowire-based three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchange membrane fuel cells", Journal of Power Sources, 185: pp. 1079-1085, (2008).
[88]      Zhao, G.-Y., Xu, C.-L., Guo, D.-J., Li, H., Li, H.-L., "Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation", Applied surface science, 253: pp. 3242-3246, (2007).
[89]      Choi, W. C., Woo, S. I., "Bimetallic Pt–Ru nanowire network for anode material in a direct-methanol fuel cell", Journal of Power Sources, 124: pp. 420-425, (2003).
[90]      Choi, S. M., Kim, J. H., Jung, J. Y., Yoon, E. Y., Kim, W. B., "Pt nanowires prepared via a polymer template method: its promise toward high Pt-loaded electrocatalysts for methanol oxidation", Electrochimica Acta, 53: pp. 5804-5811, (2008).
[91]      Napolskii, K., Barczuk, P., Vassiliev, S. Y., Veresov, A., Tsirlina, G., Kulesza, P., "Templating of electrodeposited platinum group metals as a tool to control catalytic activity", Electrochimica Acta, 52: pp. 7910-7919, (2007).
[92]      Yaldagard Maryam, S. N., Jahanshahi Mohsen, "In situ Grown of Pt-Pd Nanowires with Excellent Electrochemical Performance as a Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes Preparation", Preparation, Proceedings of the 5th International Conference on Nanostructures (ICNS5), Kish Island, Iran: pp. 646-648, (2014).
[93]      Chao, W.-K., Lee, C.-M., Tsai, D.-C., Chou, C.-C., Hsueh, K.-L., Shieu, F.-S., "Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic γ-Al< sub> 2 O< sub> 3 particles into the catalyst layer", Journal of Power Sources, 185: pp. 136-142, (2008).
[94]      Vengatesan, S., Kim, H.-J., Lee, S.-Y., Cho, E., Yong Ha, H., Oh, I.-H., Hong, S.-A., Lim, T.-H., "High temperature operation of PEMFC: a novel approach using MEA with silica in catalyst layer", International journal of hydrogen energy, 33: pp. 171-178, (2008).
[95]      Jung, U. H., Park, K. T., Park, E. H., Kim, S. H., "Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer", Journal of Power Sources, 159:
pp. 529-532, (2006).
[96]      Xie, Z., Navessin, T., Shi, Z., Chow, R., Holdcroft, S., "Gas diffusion electrodes containing ZHP/Nafion for PEMFC operation at 120°C", Journal of Electroanalytical Chemistry, 596: pp. 38-46, (2006).
[97]      Shin, S. -J., Lee, J. -K., Ha, H. -Y., Hong, S. -A., Chun, H. -S., Oh, I. -H., "Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells", Journal of Power Sources, 106: pp. 146-152, (2002).
[98]      Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., Giorgi, L., "Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance", Electrochimica Acta, 46: pp. 799-805, (2001).
[99]      Yaldagard, M., Jahanshahi, M., Seghatoleslami, N., "Carbonaceous nanostructured support materials for low temperature fuel cell electrocatalysts—A review", World Journal of Nano Science and Engineering, 3: pp. 121-153, (2013).
[100]    Yaldagard, M., Saghatoleslami, N.,
"Non-carbonaceous nanostructured support materials for low temperature fuel cell electrocatalysts", Nano Science and Nano Technology An Indian Journal, 8, (2014).
[101]    Yaldagard, M., "Nanostructured support materials for low temperature fuel cell electrocatalysts", Noor Publishing, Omniscriptum GmbH & Co.KG, (2016).