جذب سرب از محلول آبی با استفاده از کامپوزیت نانوساختار سیلیکا ائروژل/ زئولیت ZSM-5

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی سهند تبریز

2 استاد مهندسی شیمی، دانشگاه صنعتی سهند تبریز

چکیده

در این مطالعه، دو جاذب زئولیت ZSM-5 و سیلیکا ائروژل سنتز شد و سپس از یک روی‌کرد ساده، تکرارپذیر و اقتصادی برای بارگذاری نانوذرات سیلیکا ائروژل برروی ساختار تابوت مانند زئولیت ZSM-5 استفاده شد. بدین ترتیب سه جاذب کامپوزیت با درصدهای متفاوت تهیه شد. ویژگی جاذب‌ها با تجزیههای میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، طیف‌سنجی پراش پرتو ایکس (XRD)، اسپکترومتری زیر قرمز تبدیل فوریه (FT-IR)، مساحت سطح ویژه (BET-BJH) و پتانسیل زتا مشخص شدند. با مقایسۀ عمل‌کرد هر سه جاذب، کامپوزیت سیلیکا ائروژل (75%)/زئولیت (25%) به‌عنوان جاذب بهینه تعیین و  از این جاذب، برای جداسازی یون سرب از محلول آبی استفاده شد. ظرفیت جذب اشباع برای یون سرب mg/g 476/2 به‌دست آمد. برای به‌دست‌آوردن بهترین مدل ایزوترم و جنبش‌شناسی از توابع خطا و ضرایب رگرسیون، به‌ویژه آزمون کای دو (χ2) و مجموع مربعات خطا (SSE) استفاده شد. با توجه به بررسی‌های ایزوترم جذب، داده‌ها ‌به‌خوبی با مدل‌ ایزوترم تمکین مطابقت داشت. مدل جنبش‌شناسی شبه مرتبۀ دوم نیز، تناسب بهتری با داده‌های آزمایشگاهی داشت. انرژی فعال‌سازی برای سرب kj/mol 31/11 حساب شد. این مقادیر نشان می‌دهد که جذب فیزیکی رخ داده است. نتایج نشان می‌دهد که کامپوزیت سیلیکا ائروژل/ زئولیت ZSM-5 جاذب مناسبی برای حذف آلاینده‌های مختلف (مانند فلزات سنگین) در سامانه‌های آبی است؛ لذا، این جاذب ممکن است در مقیاس بزرگ‌تر برای جذب انواع آلاینده‌ها استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption of Lead from Aqueous Solution Using Nanostructured Silica Aerogel / Zeolite ZSM-5 Composite

نویسندگان [English]

  • H. Abedpour 1
  • J. S. Moghadas 2
  • R. Alizadeh 2
1 M. Sc. in Chemical Engineering, Sahand University of Technology
2 Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

In this study, three composite adsorbents with different percentages zeolite ZSM-5 and silica aerogel, were synthesized. The adsorbents were characterized by FESEM, XRD, FTIR, BET-BJH, and zeta potential. By comparing the performance of the zeolite ZSM-5 (25)/silica aerogel (75) adsorbent as an optimal adsorbent and other inexpensive adsorbents, it was observed that the adsorbent studied in this experiment has good adsorption efficiency. The saturated adsorption capacity reached 476.2 mg/g for Pb+2. To obtain the best isotherm and kinetic model, error functions and regression coefficients, especially the Chi-square test (χ2) and sum square error (SSE), were used. The findings fit well with Temkin isotherm models, according to the adsorption isotherm investigations. The kinetic data for the pseudo-second-order kinetic model exhibited
a high correlation coefficient and a low error function. The activation energies for lead were and 11.31 kJ/mol, respectively. These values indicate that physical adsorption has occurred. The Com3 absorbent was separated from the wastewater and reused after recovery. This feature caused the adsorbent to have a strong adsorption ability, so the adsorption process was performed in five cycles. FTIR and EDX analyses were performed to confirm the adsorption of heavy metals by the adsorbent. The results show that the zeolite ZSM-5/silica aerogel composite is a suitable adsorbent for the removal of various toxins(such as heavy metals) in aqueous systems that contain an adsorbate. As a result, the new zeolite ZSM-5/silica aerogel composite may be used on a larger scale as a material to absorb a variety of contaminants.

کلیدواژه‌ها [English]

  • Zeolite ZSM-5
  • Silica Aerogel
  • Nano-Composite
  • Lead (II)
  • Adsorption
  • Isotherm
[1]        Karve, M. Rajgor, R. V., "Solid phase extraction of lead on octadecyl bonded silica membrane disk modified with Cyanex302 and determination by flame atomic absorption spectrometry", Journal of hazardous materials, 141(3): pp. 607-613, (2007).
[2]        Memon, S. Q., Hasany, S., Bhanger, M., Khuhawar, M., "Enrichment of Pb (II) ions using phthalic acid functionalized XAD-16 resin as a sorbent", Journal of colloid and interface science, 291(1): pp. 84-91, (2005).
[3]        Shahat, A., Hassan, H. M., Azzazy, H. M., El-Sharkawy E., Abdou H. M., Awual M. R., "Novel hierarchical composite adsorbent for selective lead (II) ions capturing from wastewater samples", Chemical Engineering Journal, 332: pp. 377-386, (2018).
[4]        Largitte, L., Pasquier, R., " A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon", Chemical engineering research and design, 109: pp. 495-504, (2016).
[5]        Vajedi, F., Dehghani, H,. "The characterization of TiO2-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium (II), lead (II) and copper (II)", Materials Science and Engineering: B, 243: pp. 189-198, (2019).
[6]        Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., Huang, Z., "Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates", Journal of water process engineering, 26: pp. 289-300, (2018).
[7]        Mondal, S., Majumder, S. K., "Fabrication of the polysulfone-based composite ultrafiltration membranes for the adsorptive removal of heavy metal ions from their contaminated aqueous solutions", Chemical Engineering Journal, 401: p. 126036, (2020).
[8]        Maliou, E., Malamis, M., Sakellarides, P., "Lead and cadmium removal by ion exchange", Water Science and Technology, 25(1): pp. 133-138, (1992).
[9]        Tang, J., Steenari, B. -M., "Solvent extraction separation of copper and zinc from MSWI fly ash leachates", Waste Management, 44: pp. 147-154, (2015).
[10]      Ali, I. O., Hassan, A. M., Shaaban, S. M., Soliman, K. S., "Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite", Separation and Purification Technology, 83: pp. 38-44, (2011).
[11]      Shan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H., "Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems", Chinese Journal of Chemical Engineering , 28(5): pp. 1375-1383, (2020).
[12]      Kwon, J. -S., Yun, S. -T., Lee, J. -H., Kim, S. -O., Jo, H. Y., "Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibria of sorption", Journal of Hazardous Materials, 174(1-3): pp. 307-313,(2010).
[13]      Yadanaparthi, S. K. R., Graybill, D., Wandruszka, R., "Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters", Journal of hazardous materials, 171(1-3): pp. 1-15, (2009).
[14]      Huang, C. -C., Su, Y. -J., "Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths", Journal of Hazardous Materials, 175(1-3): pp. 477-483, (2010).
[15]      Meena, A. K., Mishra, G., Rai, P., Rajagopal, C., Nagar, P., "Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent", Journal of hazardous materials, 122(1-2): pp. 161-170, (2005).
[16]      Faghihian, H., Nourmoradi, H., Shokouhi, M., "Performance of silica aerogels modified with amino functional groups in PB (II) and CD (II) removal from aqueous solutions", Polish Journal of Chemical Technology 2012, 14(1): pp. 50-56, (2012).
[17]      Wojciechowska, K. M., Król, M., Bajda, T., Mozgawa, W., "Sorption of heavy metal cations on mesoporous ZSM-5 and mordenite zeolites", Materials, 12(19): pp. 3271, (2019).
[18]      Kwak, J. -H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., Chang, S. X., "Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation", Chemosphere, 231: pp. 393-404, (2019).
[19]      Mohammadi, A., Moghaddas, J. S., "Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites", Chemical Engineering Research and Design, 94: pp. 475-484, (2015).
[20]      Tarach, K., Góra, K., Tekla, J., Brylewska, K., Datka, J., Mlekodaj, K., Makowski, W., López, M. I., Triguero, J. M., Rey, F., "Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility", Journal of catalysis, 312: pp. 46-57, (2014).
[21]      Góra, K., Brylewska, K., Tarach, K. A., Rutkowska, M., Jabłońska M., Choi M., Chmielarz, L., "IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes", Applied Catalysis B: Environmental, pp. 589-598.(2015).
[22]      Ma, Y., Tong, W., Zhou, H., Suib, S. L., "A review of zeolite-like porous materials", Microporous and mesoporous materials, 37(1-2): pp. 243-252, (2000).
[23]      Cundy, C. S., Cox, P. A., "The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism", Microporous and mesoporous materials, 82(1-2): pp. 1-78, (2005).
[24]      Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., Tielens, F., Ifthikar, J., Bonilla-Petriciolet, A., Chen, Z., "Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation", Chemical Engineering Journal, 420: p. 127712, (2021).
[25]      Hou, T., Yan L., Li, J., Yang, Y., Shan, L., Meng, X., Li, X., Zhao, Y., "Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent", Chemical Engineering Journal, 384: pp. 123331, (2020).
[26]      Jin, Y., Liu, Z., Han, L., Zhang, Y., Li, L., Zhu, S., Li, Z. P. J., Wang, D., "Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions", Journal of Hazardous Materials, 423: p.127027, (2020).
[27]      Zhuang, S., Zhu, K., Wang, J., "Fibrous chitosan/cellulose composite as an efficient adsorbent for Co (II) removal", Journal of Cleaner Production, 285: p. 124911, (2021).
[28]      Zeng, Q., Huang, Y., Huang, L., Hu, L., Sun, W., Zhong, H., He, Z., "High adsorption capacity and super selectivity for Pb (II) by a novel adsorbent: Nano humboldtine/almandine composite prepared from natural almandine", Chemosphere, 253: p. 126650, (2020).
[29]      Pouretedal, H., Kazemi, M., "Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu2+, Cd2+, and Pb2+ ions", International Journal of Industrial Chemistry, 3(1): pp. 1-8, (2012).
[30]      Başaran, E., Alp, T., Özcan, A., Gök, Ö., Özcan, A. S., "Effects of different parameters on the synthesis of silica aerogel microspheres in supercritical CO2 and their potential use as an adsorbent", Journal of Sol-Gel Science and Technology, 89(2): pp. 458-472, (2019).
[31]      Kabiri, S., Tran, D. N., Azari, S., Losic, D., "Graphene-diatom silica aerogels for efficient removal of mercury ions from water", ACS applied materials & interfaces, 7(22): pp. 11815-11823, (2015).
[32]      Ghahremani, P., Vakili, M. H., Nezamzadeh, A., "Optimization of Pb (II) removal by a novel modified silica aerogel using Quince seed mucilage with response surface methodology", Journal of Environmental Chemical Engineering, 9(6): p.106648, (2021).
[33]      Shariatinia, Z., Esmaeilzadeh, A., "Hybrid silica aerogel nanocomposite adsorbents designed for Cd (II) removal from aqueous solution", Water Environment Research, 91(12): pp. 1624-1637, (2019).
[34]      Štandeker, S., Veronovski, A., Novak, Z., Knez, Ž., "Silica aerogels modified with mercapto functional groups used for Cu (II) and Hg (II) removal from aqueous solutions", Desalination, 269(1-3): p. 223-230, (2011).
[35]      Heitmann, G., Dahlhoff, G., Niederer, J., Hölderich, W., "Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam", Journal of Catalysis, 194(1): pp. 122-129, (2000).
[36]      Bhatia, S., Abdullah, A. Z., Wong, C. T., "Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: Experimental and modelling studies", Journal of hazardous materials, 163(1): pp. 73-81. , (2009).
[37]      Yaashikaa, P., Kumar, P. S., Saravanan, A., Daiviet, N., "Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook", Journal of Hazardous Materials, 420: p. 126596, (2021).
[38]      Riffat, R., Husnain, T., "Fundamentals of wastewater treatment and engineering": Crc Press; (2013).
[39]      Abdelfattah, I., Ismail, A. A., Alsayed, F., Almedolab, A., Aboelghait, K., "Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent", Environmental Nanotechnology, Monitoring & Management, 6: pp. 176-183, (2016).
[40]      Suriya, J., Bharathiraja, S., Rajasekaran, R., "Biosorption of heavy metals by biomass of Enterobacter cloacae isolated from metal-polluted soils", International Journal of ChemTech Research, 5(3): pp. 1229-1238, (2013).
[41]      Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T., Kimura, K., "Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein", Research in microbiology, 164(7): pp. 701-709, (2013).
[42]      Bonab, S. A., Moghaddas, J. S., Rezaei, M., "In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties", Polymer, 172: pp. 27-40,(2019).
[43]      Shi, F., Wang, L., Liu, J., "Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process", Materials Letters, 60(29-30): pp. 3718-3722, (2006).
[44]      Rao, A. V., Pajonk, G., Bhagat, S., Barboux, P., "Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4− n", Journal of Non-Crystalline Solids 2004, 350; pp. 216-223, (2004).
[45]      Lee, S., Cha, Y. C., Hwang, H. J., Moon, J. -W., Han, I. S., "The effect of pH on the physicochemical properties of silica aerogels prepared by an ambient pressure drying method", Materials Letters, 61(14-15): pp. 3130-3133, (2007).
[46]      Najafidoust, A., Asl, E. A., Hakki, H. K., Sarani, M., Bananifard, H., Sillanpaa, M., Etemadi, M., "Sequential impregnation and sol-gel synthesis of Fe-ZnO over hydrophobic silica aerogel as a floating photocatalyst with highly enhanced photodecomposition of BTX compounds from water", Solar Energy, 225: pp. 344-356, (2021).
[47]      Langmuir, I., "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of the American Chemical society, 40(9): pp. 1361-1403, (1918).
[48]      Sahoo, T. R., Prelot, B., "Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology", In: Nanomaterials for the detection and removal of wastewater pollutants. Elsevier:pp. 161-222, (2020).
[49]      Do, D. D., "Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs)", Vol. 2: World Scientific; (1998).
[50]      Freundlich, H., "Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II", Transactions of the Faraday Society, 28: pp. 195-201, (1932).
[51]      Temkin, M., "Kinetics of ammonia synthesis on promoted iron catalysts", Acta physiochim URSS, 12: pp. 327-356, (1940).
[52]      Foroutan, R., Ahmadlouydarab, M., Ramavandi, B., Mohammadi, R., "Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite", Journal of environmental chemical engineering, 6(5):pp. 6049-6058, (2018).
[53]      Lagergren, S. K., "About the theory of so-called adsorption of soluble substances", Sven Vetenskapsakad Handingarl, 24: pp. 1-39, (1898).
[54]      Ho, Y. -S., "Review of second-order models for adsorption systems", Journal of hazardous materials, 136(3): pp. 681-689, (2006).
[55]      Weber, J. r., Walter, J., Morris, J. C,. "Kinetics of adsorption on carbon from solution", Journal of the sanitary engineering division, 89(2): pp. 31-59, (1963).
[56]      Demirbas, E., Dizge, N., Sulak, M., Kobya, M., "Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon", Chemical Engineering Journal, 148(2-3): pp. 480-487, (2009).
[57]      Tran, H. N., You, S. -J., Chao, H. -P., "Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study", Journal of Environmental Chemical Engineering, 4(3): pp. 2671-2682, (2016).
[58]      Sadeghpour, P., Haghighi, M., "High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion", Advanced Powder Technology, 29(5): pp. 1175-1188, (2018).
[59]      Xue, S. -H., Xie, H., Ping, H., Li, Q. -C., Su, B. -L., Fu, Z. -Y., "Induced transformation of amorphous silica to cristobalite on bacterial surfaces", RSC advances, 5(88):pp. 71844-71848, (2015).
[60]      Ji, X., Zhou, Q., Qiu, G., Yue, C., Guo, M., Chen, F., Zhang, M., "Preparation of monolithic silica-based aerogels with high thermal stability by ambient pressure drying", Ceramics International, 44(11): pp. 11923-11931, (2018).
[61]      Feng, Q., Chen, K., Ma, D., Lin, H., Liu, Z., Qin, S., Luo, Y., "Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539: pp. 399-406, (2018).
[62]      Zakaria, Z. Y., Linnekoski, J., Amin, N. S., "Catalyst screening for conversion of glycerol to light olefins", Chemical engineering journal, 207: pp. 803-813, (2012).
[63]      Tavan, Y., Nikou, M. R. K., Shariati, A., "Effect of the P/Al ratio on the performance of modified HZSM-5 for methanol dehydration reaction", Journal of Industrial and Engineering Chemistry, 20(2): pp. 668-673, (2014).
[64]      Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., Shen, W., Xu, H., "The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction", Catalysis Communications, 24: pp. 44-47, (2012).
[65]      Wang, P., Lv, A., Hu, J., Lu, G., "The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction", Microporous and mesoporous materials, 152: pp. 178-184, (2012).
[66]      Vafaeian, Y., Haghighi, M., Aghamohammadi, S., "Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane", Energy conversion and management, 76: pp. 1093-1103, (2013).
[67]      Barrado, E., Rodríguez, J., Prieto, F., Medina, J., "Characterization of iron oxides embedded in silica gel obtained by two different methods", Journal of Non-Crystalline Solids, 351(10-11): pp. 906-914, (2005).
[68]      Wei, W., Hu, H., Ji, X., Yan, Z., Sun, W., Xie, J., "Selective adsorption of organic dyes by porous hydrophilic silica aerogels from aqueous system", Water Science and Technology, 78(2): pp. 402-414, (2018).
[69]      Tang, R., Hong, W., Srinivasakannan, C., Liu, X., Wang, X., Duan, X., "A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green", Separation and Purification Technology, 281: pp. 119950, (2022).
[70]      Srivastava, V., Sillanpää, M., "Synthesis of malachite@ clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater", Journal of Environmental Sciences, 51: pp. 97-110, (2017).
[71]      Luu, T. -T., Dinh, V. -P., Nguyen, Q. -H., Tran, N. -Q., Nguyen, D. -K., Ho, T. -H., Nguyen, V. -D., Tran, D. X., Kiet, H. T., "Pb (II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan", Chemosphere 2022, 287: p. 132279, (2022).
[72]      Masoumi, A., Ghaemy, M., Bakht, A. N., "Removal of metal ions from water using poly (MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study", Industrial & Engineering Chemistry Research, 53(19): pp. 8188-8197, (2014).
[73]      Saber-Samandari, S., Saber-Samandari, S., Nezafati, N., Yahya, K., "Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads", Journal of environmental management, 146: pp. 481-490, (2014).
[74]      Yuwei, C., Jianlong, W., "Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal", Chemical engineering journal, 168(1): pp. 286-292, (2011).
[75]      Ngah, W. W., Fatinathan, S., "Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies", Journal of environmental management, 91(4): pp. 958-969, (2010).
[76]      Yadav, S., Asthana, A., Singh, A. K., Chakraborty, R., Vidya, S. S., Susan, MABH., Carabineiro, S. A., "Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies", journal of Hazardous Materials, 409: p. 124840, (2021).
[77]      Hadi, M., McKay, G., Samarghandi, M. R., Maleki, A., Solaimany-Aminabad. M., "Prediction of optimum adsorption isotherm: comparison of
chi-square and Log-likelihood statistics", Desalination and Water Treatment, 49(1-3): pp. 81-94, (2012).
[78]      Chakraborty, R., Asthana, A., Singh, A. K., Yadav, S., Susan, MABH., Carabineiro, S. A., "Intensified elimination of aqueous heavy metal ions using chicken feathers chemically modified by a batch method", Journal of Molecular Liquids 2020, 312: p. 113475, (2020).
[79]      Karoui, S., Arfi, R. B., Mougin, K., Ghorbal, A., Assadi, A. A., Amrane, A., "Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models", Journal of hazardous materials, 387: p. 121675, (2020).
[80]      Ahmad, M. A., Puad, N. A. A., Bello, O. S., "Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation", Water Resources and industry, 6: pp. 18-35, (2014).
[81]      Soltani, R., Marjani, A., Shirazian, S., "Facile one-pot synthesis of thiol-functionalized mesoporous silica submicrospheres for Tl (I) adsorption: Isotherm, kinetic and thermodynamic studies", Journal of hazardous materials, 371: pp. 146-155, (2019).
[82]      Raichur, A., Basu, MJ., "Adsorption of fluoride onto mixed rare earth oxides", Separation and Purification Technology, 24(1-2): pp. 121-127, (2001).
[83]      Bayramoglu, G., Altintas, B., Arica, M. Y., "Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin", Chemical Engineering Journal, 152(2-3): pp. 339-346, (2009).
[84]      Hubbe, M. A., Azizian, S., Douven, S., "Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review", BioResources, 14(3), (2019).
[85]      Kumar, P. S., Ramakrishnan, K., Kirupha, S. D., Sivanesan, S., "Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk", Brazilian Journal of Chemical Engineering, 27: pp. 347-355, (2010).
[86]      Mao, H., Wang, S., Lin, J. -Y., Wang, Z., Ren, J., "Modification of a magnetic carbon composite for ciprofloxacin adsorption", Journal of environmental sciences, 49: pp. 179-188,(2016).
[87]      Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., Çelik, A., "Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution", Chemical Engineering Journal, 197: pp. 379-386, (2012).
[88]      Sarma P., Kumar R., Pakshirajan K., "Batch and Continuous Removal of Copper and Lead from Aqueous Solution using Cheaply Available Agricultural Waste Materials", International Journal of Environmental Research, 9(2), pp. 635-648, (2015).
[89]      Sembiring, S., Simanjuntak, W., Manurung, P., Asmi, D., Low, I. M., "Synthesis and characterisation of gel-derived mullite precursors from rice husk silica", Ceramics International, 40(5): pp. 7067-7072, (2014).
[90]      Chen, C., Guo, Y., Long, L., Chen, K., Hu, X., Xue, Y., "Biodegradable chitosan-ethylene glycol hydrogel effectively adsorbs nitrate in water", Environmental Science and Pollution Research, 27(26): pp. 32762-32769, (2020).
[91]      Zhan, W., Gao, L., Fu, X., Siyal, S. H., Sui, G., Yang, X., "Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal", Applied Surface Science, 467: pp. 1122-1133, (2019).
[92]      Li, J., Zuo, K., Wu, W., Xu, Z., Yi, Y., Jing, Y., Dai, H., Fang, G., "Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu (II) and Pb (II)", Carbohydrate Polymers, 196: pp. 376-384, (2018).
[93]      Huang, Y., Wang, Z., "Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+ and Cu2+ from water", International journal of biological macromolecules, 107: pp.741-747, (2018).
[94]      Chaisuwan, T., Komalwanich, T., Luangsukrerk, S., Wongkasemjit, S., "Removal of heavy metals from model wastewater by using polybenzoxazine aerogel", Desalination, 256(1-3): pp. 108-114, (2010).
[95]      Pan, L., Wang, Z., Yang, Q., Huang, R., "Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel", Nanomaterials, 8(11): p. 957, (2018).
[96]      Jiao, C., Xiong, J., Tao, J., Xu, S., Zhang, D., Lin, H., Chen, Y., "Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study", International journal of biological macromolecules, 83: pp. 133-141, (2016).