ارزیابی کارایی افزایه‌های پلیمری، نانوذرات پلیمری و مواد فعال سطحی در بهبود رئولوژی و کنترل هرزروی سیالات حفاری: مطالعۀ مروری

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی مهندسی نفت، دانشگاه حکیم سبزواری

2 استادیار مهندسی شیمی، دانشگاه قم

3 دانشجوی کارشناسی ارشد مهندسی نفت، دانشگاه صنعتی امیرکبیر

چکیده

موفقیت حفاری مخازن هیدروکربنی به‌طور جدایی‌ناپذیری به کارایی سیال حفاری وابسته است. پلیمرها و نانوذرات پلیمری به‌عنوان افزودنی‌های کارامد، ظرفیت بسیاری برای بهبود خواص سیالات حفاری دارند. با این حال، نقش مواد پلیمری در این زمینه در مراحل ابتدایی است و در سال‌های اخیر پیشرفت‌های چشم‌گیری داشته است. مطالعۀ حاضر، به مرور جامع و بررسی سیالات حفاری بهبودیافته و اصلاح‌شده به‌وسیلۀ پلیمرها و نانوذرات پلیمری مختلف می‌پردازد. هم‌چنین اثرات پلیمرهای جدید، سامانه‌های پلیمری مبتنی ­بر آب دریا و سازگار با محیط زیست، سامانه‌های پلیمری کاتیونی و آنیونی، نقش مواد فعال سطحی و نانوذرات پلیمری را در بهبود خواص سیالات حفاری تشریح و برتری‌های فنی و اقتصادی آن‌ها تحلیل کرده است. این پژوهش ضمن بررسی پیشرفت‌های اخیر در سنتز و کاربردهای پلیمرها و نانوذرات پلیمری در سامانۀ سیالات حفاری، نقش پلیمرها در اصلاح و ارتقای خواص رئولوژی و کنترل هرزروی، ضخامت کیک گل، خواص فیلتراسیون و پایداری حرارتی را به بحث گذاشته است. مرور مقالات نشان می‌دهد که سامانه‌های پلیمری سازگار با محیط زیست تا 30 درصد، هزینه‌ها را کاهش می‌دهند و موجب کاهش حمل و دفع پسماند می‌شوند. استفاده از سامانه‌های پلیمری کاتیونی و آنیونی بار سنگ را خنثی می‌کند و برهمکنش الکترواستاتیک آن با آب را کاهش می‌دهد که مانع از نفوذ آب به‌درون رس می‌شود و می‌تواند مانند پلیمر PHPA  (Partially Hydrolyzed Polyacrylamid)مشکلات حفاری لایه‌های رسی را کاهش دهد. پلیمر تراویدۀ ترمینالیا مانتالی به‌عنوان یک زیست ­پلیمر و پلیمر (Carboxymethyl cellulose) CMC افزایه‌های مطلوبی برای افزایش گران‌روی هستند. هم‌چنین قابلیت تحمل فشار و آب‌بندی بسیار بالای سیالات حفاری مبتنی­بر نانوذرات پلیمری موجب جلوگیری از انتقال فشار و به حد اقل رساندن تعامل سیالات بین مته و سازند می‌شود و پایداری چاه را بهبود می‌بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Efficiency of Polymers, Polymeric Nanoparticles and Surfactants Additives in Improving the Rheology and Loss Control of Drilling Fluids: A Review

نویسندگان [English]

  • H. Abbasi 1
  • A. Hashemizadeh 2
  • F. Navaie 3
1 B. Sc. Student of Petroleum Engineering, Hakim Sabzevari University
2 Assistant Professor of Chemical Engineering, University of Qom
3 M. Sc. Student of Petroleum Engineering, Amirkabir University of Technology
چکیده [English]

The success of drilling hydrocarbon reservoirs is inextricably linked to the efficiency of the drilling fluid. Polymers and nanopolymers as effective additives have great potential to improve the properties of drilling fluids. However, the role of polymeric materials in this field is in its beginnings and had significant progress in recent years. The present study reviews the drilling fluids improved and modified by various polymers and nanopolymers. Also, the effects of new polymers, seawater-based and environmentally friendly polymer systems, cationic and anionic polymer systems, the role of surfactants and nanopolymers in improving the properties of drilling fluids are described and their technical and economic advantages are studied. This research reviews recent advances in the synthesis and applications of polymers and nanopolymers in drilling fluid systems while discussing the role of polymers in modifying rheological properties and controlling drilling fluid loss, mud cake thickness, filtration properties, and thermal stability. The most important findings of this review show that environmentally friendly polymer systems reduce costs by up to 30% and reduce the transport and disposal of drilling fluid waste. The use of cationic and anionic polymer systems neutralizes the rock charge and reduces its electrostatic interaction with water, which prevents water from penetrating the clay and can, like PHPA polymer, reduce the drilling problems of clay layers. As a biopolymer, terminalia mantaly (TM gum) and CMC are desirable additives to increase viscosity. Also, the ability to withstand high pressure and sealing of drilling fluids based on nanopolymers prevents pressure transfer and minimizes the interaction of fluids between the drilling bit and the formation, thus improving the stability of the oil and gas wells.
 

کلیدواژه‌ها [English]

  • Improve Drilling Fluids
  • Polymers
  • Polymeric Nanoparticles
  • Surfactants
  • Rheology
  • Fluid loss Control
[1]        Tour, J. M., Kittrell, C., & Colvin, V. L. (2010). Green carbon as a bridge to renewable energy. Nature materials, 9(11), 871-874.
[2]        Bilgen, S. E. L. Ç. U. K. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38,
890-902.
[3]        Chang, Y., Li, G., Yao, Y., Zhang, L., & Yu, C. (2016). Quantifying the water-energy-food nexus: Current status and trends. Energies, 9(2), 65.
[4]        Yan, X., Ariaratnam, S. T., Dong, S., & Zeng, C. (2018). Horizontal directional drilling:
State-of-the-art review of theory and applications. Tunnelling and Underground Space Technology, 72, 162-173.
[5]        Leusheva, E., Brovkina, N., & Morenov, V. (2021). Investigation of Non-Linear Rheological Charac-teristics of Barite-Free Drilling Fluids. Fluids, 6(9), 327.
[6]        Ali, M., Jarni, H. H., Aftab, A., Ismail, A. R., Saady, N. M. C., Sahito, M. F., ... & Sarmadivaleh, M. (2020). Nanomaterial-based drilling fluids for exploitation of unconventional reservoirs: a review. Energies, 13(13), 3417.
[7]        Amanullah, M., Al-Arfaj, M. K., & Al-Abdullatif, Z. (2011, March). Preliminary test results of nano-based drilling fluids for oil and gas field application. In SPE/IADC drilling conference and exhibition(pp. SPE-139534). SPE.
[8]        Apaleke, A. S., Al-Majed, A., & Hossain, M. E. (2012, February). Drilling fluid: state of the art and future trend. In SPE North Africa Technical Conference and Exhibition (pp. SPE-149555). SPE.
[9]        Khodja, M., Khodja-Saber, M., Canselier, J. P., Cohaut, N., & Bergaya, F. (2010). Drilling fluid technology: performances and environmental considerations. Products and services; from R&D to final solutions, 227-256.
[10]      Chu, Q., Lin, L., & Su, J. (2020). Amidocyanogen silanol as a high-temperature-resistant shale inhibitor in water-based drilling fluid. Applied Clay Science, 184, 105396.
[11]      Vakili, M. H., & Zarasvandnia, S. (2016). The Study of the Biopolymer-Surfactant Mixture Effect on Performance of Water Based Drilling Mud. Journal of Petroleum Research, 26(95-2), 177-186.
[12]      Davarpanah, A. (2019). The feasible visual laboratory investigation of formate fluids on the rheological properties of a shale formation. International Journal of Environmental Science and Technology, 16(8), 4783-4792.
[13]      Hajiabadi, S. H., Aghaei, H., Kalateh-Aghamohammadi, M., Sanati, A., Kazemi-Beydokhti, A., & Esmaeilzadeh, F. (2019). A comprehensive empirical, analytical and tomographic investigation on rheology and formation damage behavior of a novel nano-modified invert emulsion drilling fluid. Journal of Petroleum Science and Engineering, 181, 106257.
[14]      Erge, O., Sakaoglu, K., Sonmez, A., Bagatir, G., Dogan, H. A., Ay, A., & Gucuyener, I. H. (2020). Overview and design principles of drilling fluids systems for geothermal Wells in Turkey. Geothermics, 88, 101897.
[15]      Hamed, S. B., & Belhadri, M. (2009). Rheological properties of biopolymers drilling fluids. Journal of Petroleum Science and Engineering, 67(3-4), 84-90.
[16]      Wan, T., Yao, J., Zishun, S., Li, W., & Juan, W. (2011). Solution and drilling fluid properties of water soluble AM–AA–SSS copolymers by inverse microemulsion. Journal of Petroleum Science and Engineering, 78(2), 334-337.
[17]      Elkatatny, S., Kamal, M. S., Alakbari, F., & Mahmoud, M. (2018). Optimizing the rheological properties of water-based drilling fluid using clays and nanoparticles for drilling horizontal and multi-lateral wells. Applied Rheology, 28(4), 201843606.
[18]      Akpan, E. U., Enyi, G. C., Nasr, G., Yahaya, A. A., Ahmadu, A. A., & Saidu, B. (2019). Water-based drilling fluids for high-temperature applications and water-sensitive and dispersible shale formations. Journal of Petroleum Science and Engineering, 175, 1028-1038.
[19]      Akpan, E. U., Enyi, G. C., Nasr, G. G., & Yahaya, A. A. (2018). Stabilizing biopolymers in water-based drilling fluids at high temperature using antioxidants, a formate salt, and polyglycol. Journal of Engineering Technology, 7(2).
[20]      Ahmad, H. M., Kamal, M. S., Murtaza, M., & Al-Harthi, M. A. (2017, April). Improving the drilling fluid properties using nanoparticles and water-soluble polymers. In SPE Kingdom of Saudi Arabia annual technical symposium and exhibition. OnePetro.
[21]      Nasiri, A., Shahrabi, M. J. A., Nik, M. A. S., Heidari, H., & Valizadeh, M. (2018). Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system. Petroleum Exploration and Development, 45(1), 167-171.
[22]      Sajjadian, M., Sajjadian, V. A., & Rashidi, A. (2020). Experimental evaluation of nanomaterials to improve drilling fluid properties of water-based muds HP/HT applications. Journal of Petroleum Science and Engineering, 190, 107006.
[23]      Al-Yasiri, M. S., & Al-Sallami, W. T. (2015). How the drilling fluids can be made more efficient by using nanomaterials. American Journal of Nano Research and Applications, 3(3), 41-45.
[24]      Boyou, N. V., Ismail, I., Sulaiman, W. R. W., Haddad, A. S., Husein, N., Hui, H. T., & Nadaraja, K. (2019). Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids. Journal of Petroleum Science and Engineering, 176, 220-231.
[25]      David Ytrehus, J., Taghipour, A., Golchin, A., Saasen, A., & Prakash, B. (2017). The effect of different drilling fluids on mechanical friction. Journal of Energy Resources Technology, 139(3), 034502.
[26]      Alcheikh, I. M., & Ghosh, B. (2017). A comprehensive review on the advancement of non-damaging drilling fluids. Int. J. Petrochem. Res, 1(1), 61-72.
[27]      Jacob, N. C. G., Frank, O., Ebube, O. F., & Hezekiah-Braye, O. (2021). Effect of Microbes on Drilling Fluid Formulation. International Journal of Advanced Engineering Research & Science, 8(6), 491-498.
[28]      Gaurina-Međimurec, N., Pašić, B., Mijić, P., & Medved, I. (2020). Deep underground injection of waste from drilling activities—An overview. Minerals, 10(4), 303.
[29]      Basu, S., Cross, T., & Skvortsov, S. (2019). Salt water disposal modeling of dakota sand, williston basin, to drive drilling decisions. In SPE/AAPG/SEG Unconventional Resources Technology Conference (p. D033S057R004). URTEC.
[30]      Darley, H. C. H., & Gray, G. R. (1988). Composition and properties of drilling fluids. Houston: Gulf Publishing, 1-643.
[31]      Onuh, C. Y., Dosunmu, A., Anawe, P. A. L., Efeovbokhan, V., & Adebisi, A. (2017). Transesterification of non-edible vegetable oil for lubricant applications in water-based mud: a review. International Journal of Applied Engineering Research, 12(18), 7397-7401.
[32]      Sadeghalvaad, M., & Sabbaghi, S. (2015). The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technology, 272, 113-119.
[33]      Rana, A., Khan, I., & Saleh, T. A. (2021). Advances in carbon nanostructures and nanocellulose as additives for efficient drilling fluids: trends and future perspective—a review. Energy & Fuels, 35(9), 7319-7339.
[34]      Dardir, M. M., Ibrahime, S., Soliman, M., Desouky, S. D., & Hafiz, A. A. (2014). Preparation and evaluation of some esteramides as synthetic based drilling fluids. Egyptian Journal of Petroleum, 23(1), 35-43.
[35]      Falode, O. A., Ehinola, O. A., & Nebeife, P. C. (2008). Evaluation of local bentonitic clay as oil well drilling fluids in Nigeria. Applied Clay Science,39(1-2), 19-27.
[36]      Ali, J. A., Kalhury, A. M., Sabir, A. N., Ahmed, R. N., Ali, N. H., & Abdullah, A. D. (2020). A state-of-the-art review of the application of nanotechnology in the oil and gas industry with a focus on drilling engineering. Journal of Petroleum Science and Engineering, 191, 107118.
[37]      Zahid, A. A., Ur Rehman, S. R., Rushd, S., Hasan, A., & Rahman, M. A. (2020). Experimental investigation of multiphase flow behavior in drilling annuli using high speed visualization technique. Frontiers in Energy, 14, 635-643.
[38]      Urbissinova, T. S., Trivedi, J., & Kuru, E. (2010). Effect of elasticity during viscoelastic polymer flooding: a possible mechanism of increasing the sweep efficiency. Journal of Canadian Petroleum Technology, 49(12), 49-56.
[39]      Santos, N. B. C., Fagundes, F. M., de Oliveira Arouca, F., & Damasceno, J. J. R. (2018). Sedimentation of solids in drilling fluids used in oil well drilling operations. Journal of Petroleum Science and Engineering, 162, 137-142.
[40]      Khamehchi, E., Tabibzadeh, S., & Alizadeh, A. (2016). Rheological properties of Aphron based drilling fluids. Petroleum Exploration and Development, 43(6), 1076-1081.
[41]      Zhong, H., Li, Y., Zhang, W., Yin, H., Lu, J., & Guo, D. (2018). Microflow mechanism of oil displacement by viscoelastic hydrophobically associating water-soluble polymers in enhanced oil recovery. Polymers, 10(6), 628.
[42]      Murtaza, M., Tariq, Z., Mahmoud, M., Kamal, M. S., & Al-Shehri, D. (2021). Anhydrite (calcium sulfate) mineral as a novel weighting material in drilling fluids. Journal of Energy Resources Technology, 143(2), 023002.
[43]      Gbadamosi, A. O., Junin, R., Oseh, J. O., Agi, A., Yekeen, N., Abdalla, Y., ... & Yusuff, A. S. (2018, August). Improving hole cleaning efficiency using nanosilica in water-based drilling mud. In SPE Nigeria annual international conference and exhibition. OnePetro.
[44]      Mahmoud, H., Hamza, A., Nasser, M. S., Hussein, I. A., Ahmed, R., & Karami, H. (2020). Hole cleaning and drilling fluid sweeps in horizontal and deviated wells: Comprehensive review. Journal of petroleum science and engineering, 186, 106748.
[45]      Deville, J. P. (2022). Drilling fluids, In Fluid Chemistry, Drilling and Completion. (pp. 115-185). Gulf Professional Publishing.
[46]      Liu, X., Xie, B., Gao, Y., Gu, H., Ma, Y., Zhang, Y., ... & Li, Q. (2018, August). Development of low toxicity and high temperature polymer drilling fluid for environmentally sensitive offshore drilling. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, (p. D022S003R005). SPE.
[47]      Hossain, M. E., & Wajheeuddin, M. (2016). The use of grass as an environmentally friendly additive in water-based drilling fluids. Petroleum Science, 13, 292-303.
[48]      Liu, X., Gao, Y., Hou, W., Ma, Y., & Zhang, Y. (2019). Non-toxic high temperature polymer drilling fluid significantly improving marine environmental acceptabiiity and reducing cost for offshore drilling. International Petroleum Technology Conference(p. D031S062R005). IPTC.
[49]      Razali, S. Z., Yunus, R., Rashid, S. A., Lim, H. N., & Jan, B. M. (2018). Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect. Renewable and Sustainable Energy Reviews, 90, 171-186.
[50]      Saleh, T. A., & Ibrahim, M. A. (2019). Advances in functionalized Nanoparticles based drilling inhibitors for oil production. Energy Reports, 5, 1293-1304.
[51]      Jia, H., Huang, P., Wang, Q., Han, Y., Wang, S., Dai, J., ... & Lv, K. (2020). Study of a gemini surface active ionic liquid 1, 2-bis (3-hexylimidazolium-1-yl) ethane bromide as a high performance shale inhibitor and inhibition mechanism. Journal of Molecular Liquids, 301, 112401.
[52]      Nweke, O. M., Igwe, E. O., & Nnabo, P. N. (2015). Comparative evaluation of clays from Abakaliki Formation with commercial bentonite clays for use as drilling mud. African Journal of Environmental Science and Technology, 9(6), 508-518.
[53]      Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201-216.
[54]      Rana, A., Arfaj, M. K., & Saleh, T. A. (2019). Advanced developments in shale inhibitors for oil production with low environmental footprints–A review. Fuel, 247, 237-249.
[55]      Yi, H., Jia, F., Zhao, Y., Wang, W., Song, S., Li, H., & Liu, C. (2018). Surface wettability of montmorillonite (0 0 1) surface as affected by surface charge and exchangeable cations: a molecular dynamic study. Applied Surface Science, 459, 148-154.
[56]      Arfaj, M. K., Rana, A., & Saleh, T. A. (2020, November). Highly efficient modified activated carbon as shale inhibitor for water based drilling mud modification. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro.
[57]      Inemugha, O., Chukwuma, F., Akaranta, O., & Ajienka, J. A. (2019, August). Rheological Properties of Terminalia Mantaly Exudate as Drilling Mud Additive. In SPE Nigeria Annual International Conference and Exhibition. OnePetro.
[58]      Odeniyi, M. A., Oyedokun, B. M., & Bamiro, O. A. (2017). Native and microwave-modified Terminalia mantaly gums as sustained-release and bioadhesive excipients in naproxen matrix tablet formulations. Polim Med, 47(1), 35-42.
[59]      Srivatsa, J. T., & Ziaja, M. B. (2011, November). An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant-polymer based drilling fluids. In International petroleum technology conference (pp. IPTC-14952). IPTC.
[60]      Navarrete, R. C., Dearing, H. L., Constien, V. G., Marsaglia, K. M., Seheult, J. M., & Rodgers, P. E. (2000, September). Experiments in fluid loss and formation damage with Xanthan-Based fluids while drilling. In IADC/SPE Asia Pacific drilling technology. OnePetro.
[61]      González, J. M., Quintero, F., Arellano, J. E., Márquez, R. L., Sánchez, C., & Pernía, D. (2011). Effects of interactions between solids and surfactants on the tribological properties of water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 391(1-3), 216-223.
[62]      Ogugbue, C. C., Rathan, M., & Shah, S. N. (2010, January). Experimental investigation of biopolymer and surfactant based fluid blends as reservoir drill-in fluids. In SPE Oil and Gas India Conference and Exhibition. OnePetro.
[63]      Chaturvedi, S., Kulshrestha, S., Bhardwaj, K., & Jangir, R. (2021). A review on properties and applications of xanthan gum. Microbial Polymers: Applications and Ecological Perspectives, 87-107.
[64]      Petri, D. F. (2015). Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science, 132(23).
[65]      Shettigar, R. R., Misra, N. M., & Patel, K. (2018). Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids. Journal of Petroleum Exploration and Production Technology, 8, 597-606.
[66]      Sosa-Fernandez, P. A., Miedema, S. J., Bruning, H., Leermakers, F. A. M., Rijnaarts, H. H. M., & Post, J. W. (2019). Influence of solution composition on fouling of anion exchange membranes desalinating polymer-flooding produced water. Journal of colloid and interface science, 557, 381-394.
[67]      Tessarolli, F. G., Souza, S. T., Gomes, A. S., & Mansur, C. R. (2019). Influence of polymer structure on the gelation kinetics and gel strength of acrylamide‐based copolymers, bentonite and polyethylenimine systems for conformance control of oil reservoirs. Journal of Applied Polymer Science, 136(22), 47556.
[68]      Biazar, H., Abdollahi, M., & Nasiri, A. (2019). Synthesis and Characterization of Acrylamide-based Homo-and Copolymers and their Application in Water-Based Drilling Fluid. Journal of Petroleum Research, 29(98-4), 152-164.
[69]      Ejezie, J. O., Jefferis, S. A., Lam, C., Sedighi, M., & Ahmad, S. M. (2021). Permeation behaviour of PHPA polymer fluids in sand. Géotechnique, 71(7), 561-570.
[70]      Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663-673.
[71]      Freitas, E. D., Moura Jr, C. F., Kerwald, J., & Beppu, M. M. (2020). An overview of current knowledge on the properties, synthesis and applications of quaternary chitosan derivatives. Polymers, 12(12), 2878.
[72]      Abdollahi, M., Varamesh, A., Rekabdar, F., & Nasiri, A. R. (2010). Synthesis and Use of Amphoteric Carboxymethylcellulose Graft Copolymers in the Environmentally-acceptable Water-based Drilling Fluids as a Water-sensitive Shale Stabilizer. Science and Technology, 22(6), 483-493.
[73]      Ali, I., Ahmad, M., & Ganat, T. (2022). Biopolymeric formulations for filtrate control applications in water-based drilling muds: A review. Journal of Petroleum Science and Engineering, 210, 110021.
[74]      Abdollahi, M., Pourmahdi, M., & Nasiri, A. R. (2018). Synthesis and characterization of lignosulfonate/acrylamide graft copolymers and their application in environmentally friendly water-based drilling fluid. Journal of Petroleum Science and Engineering, 171, 484-494.
[75]      Al Ruqeishi, M. S., Al Salmi, Y., & Mohiuddin, T. (2018). Nanoparticles as drilling fluids rheological properties modifiers. Progress in Petrochemical Science, 1(5), 97-103.
[76]      Cheraghian, G. (2021). Nanoparticles in drilling fluid: A review of the state-of-the-art. Journal of materials research and technology, 13, 737-753.
[77]      Adeyemi, G., Fadairo, A., Ogunkunle, T., Oladepo, A., Oredeko, O., Vitoria, O., ... & ICHI, E. (2020, August). Effect of Polymer Additives on the Rheology and Fluid Loss of Water Based Muds. In SPE Nigeria Annual International Conference and Exhibition. OnePetro.
[78]      Borah, B., & Das, B. M. (2022). A review on applications of bio-products employed in drilling fluids to minimize environmental footprint. Environmental Challenges, 6, 100411.
[79]      Zarei, V., Emamzadeh, A., & Nasiri, A. (2017). Synthesis of amorphous silica nanoparticles from natural materials applied in drilling fluid for stabilizing shale layers, Petroleum research, 27(6),  6-96, 18-13.
[80]      Said, Z., Sundar, L. S., Tiwari, A. K., Ali, H. M., Sheikholeslami, M., Bellos, E., & Babar, H. (2022). Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports, 946, 1-94.
[81]      Aramendiz, J., Imqam, A. H., & Fakher, S. M. (2019, March). Design and evaluation of a water-based drilling fluid formulation using SiO and graphene oxide nanoparticles for unconventional shales. In International petroleum technology conference
(p. D031S062R003). IPTC.
[82]      Mohamadian, N., Ghorbani, H., Wood, D. A., & Khoshmardan, M. A. (2019). A hybrid nanocomposite of poly (styrene-methyl methacrylate-acrylic acid)/clay as a novel rheology-improvement additive for drilling fluids. Journal of Polymer Research, 26, 1-14.
[83]      Jia, X., Zhao, X., Chen, B., Egwu, S. B., & Huang, Z. (2022). Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids. Applied Surface Science, 578, 152089.
[84]      Pourkhalil, H., Nakhaee, A., Nasiri, A., & Valizadeh, M. (2017). In Vitro Evaluation of the Impact of Nano Zinc Oxide on Stabilization of Shale Formations. Journal of Petroleum Research, 26(95-5), 4-14.
[85]      Vryzas, Z., & Kelessidis, V. C. (2017). Nano-based drilling fluids: A review. Energies, 10(4), 540.
[86]      Aftab, A. A. R. I., Ismail, A. R., Ibupoto, Z. H., Akeiber, H., & Malghani, M. G. K. (2017). Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renewable and Sustainable Energy Reviews, 76, 1301-1313.
[87]      Ma, J., An, Y., & Yu, P. (2019). Core–shell structure acrylamide copolymer grafted on nano-silica surface as an anti-calcium and anti-temperature fluid loss agent. Journal of Materials Science, 54, 5927-5941.
[88]      Aftab, A. A. R. I., Ismail, A. R., & Ibupoto, Z. H. (2017). Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egyptian Journal of Petroleum, 26(2), 291-299.