شبیه‌سازی تولید گاز سنتز با استفاده از ریفورمینگ اتانول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی ارومیه

2 دانشیار مهندسی شیمی، دانشگاه صنعتی ارومیه

چکیده

اتانول به‌عنوان ماده‌ای که از منابع تجدیدپذیر و تجدیدناپذیر تولید می‌شود، برای استفاده به‌عنوان سوخت یا تبدیل‌شدن به سایر حامل‌های انرژی با استقبال مواجه شده است. در این مقاله، شبیه‌سازی فرایند ریفورمینگ اتانول برای تولید گاز سنتز با استفاده از نرم‌افزار اسپن‌هایسیس انجام گرفته است. فرایندهای مورد بررسی ریفورمینگ بخار، ریفورمینگ خشک، ترکیب ریفورمینگ بخار و خشک و تری‏ریفورمینگ اتانول است. نتایج شبیه‌سازی نشان داد که بالاترین درصد تبدیل متعلق به تری‏ریفورمینگ اتانول و برابر با 60/99 درصد است، در حالی‌که کمترین درصد تبدیل در ریفورمینگ بخار اتانول و برابر با 96/96 درصد به‌دست آمد. برای ریفورمینگ خشک، ترکیب موازی و سری رآکتورها درصد تبدیل به‌ترتیب 39/99، 15/98 و 41/99 به‌دست آمد. CO/H2 به‌دست‌آمده برای ریفورمینگ بخار 22/4-19/2، ریفورمینگ خشک اتانول 1، ترکیب موازی ریفورمینگ بخار و خشک اتانول 94/2-2/1، ترکیب سری ریفورمینگ بخار و خشک اتانول 93/2-1/1 و تری‏ریفورمینگ اتانول 40/3-01/2 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Synthesis Gas Production by Ethanol Reforming

نویسندگان [English]

  • A. Behravesh 1
  • F. Bahadori 2
1 M. Sc. Student of Chemical Engineering, Urmia University of Technology
2 Associate Professor of Chemical Engineering, Urmia University of Technology
چکیده [English]

Ethanol, as a substance that can be produced from both renewable and non-renewable sources, can be used as fuel, additive to fuel or transformed into other energy carriers. Therefore; The use of pure ethanol or its conversion to other compounds has been considered by researchers. In this paper, the ethanol reforming processes are simulated for synthesis gas production using Aspen HYSYS . The studied processes include ethanol steam reforming, ethanol dry reforming, ethanol steam and dry reforming and ethanol tri-reforming. The simulation results showed that the highest conversion belongs to ethanol tri-reforming by 99.60% while the lowest conversion is related to ethanol steam reforming by 96.95%. In addition; conversion of dry reforming, parallel and cascade arrangement of reactors were obtained by 99.39%, 98.15% and 99.41%, respectively. H2/CO were obtained for steam reforming by 2.19-4.22, dry reforming by 1, parallel arrangement of steam and dry reforming of ethanol by 1.2-2.94, cascade arrangement of steam and dry reforming of ethanol by 1.1-2.93, and tri-reforming of ethanol by
2.01-3.40.

کلیدواژه‌ها [English]

  • Ethanol
  • Synthesis Gas
  • Reforming
  • H2/CO
[1] Kathiraser, Y., Oemar, U., Saw, E.T., Li, Z., Kawi, S., "Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts", Chemical Engineering Journal, pp. 62-78, (2015).
[2] Ahmadi, M., Bahadori, F., "CO2 utilization for the production of liquid hydrocarbons by coupled steam and dry reforming of bioethanol, Energy Sources", Part A: Recovery, Utilization, and Environmental Effects, 44: 3, pp. 7400-7412, (2022).
[3] Mirzadeh, M., "Using bioethanol as energy resource and decreasing the pollution of environment", Journal of Biosafety, 10(2), pp. 53-72, In Persian, (2017).
[4] Dennis, M. N., Leung Michael, Y. C., Leung, K. H., "A review on reforming bio-ethanol for hydrogen production, International Journal of Hydrogen Energy", 32 (15), pp. 3238-3247, (2007).
[5] Farkha, S., Jaf, P., Salih, W., "Gasoline Octane Number Improvement by Ethanol as an Oxygenated Compound", American Journal of Oil and Chemical Technologies, 4 (2), pp. 63-69, (2016).
[6] Denny, S. R., Lin, Z., Porter, W. N., Artrith, N., Chen, J. G., "Machine learning prediction and experimental verification of Pt-modified nitride catalysts for ethanol reforming with reduced precious metal loading", Applied Catalysis B: Environmental, 312 (5), pp. 121380, (2022).
[7] Li, F., Wang, M., Zhang, J., Lin, X., Wang, D., Cai, W., "Sandwich-type Co core@shell nanocomposite (SiO2 @Co@CeO2), Coke resistant catalyst toward CO2 reforming with ethanol", Applied Catalysis A: General, 638, pp. 118605, (2022).
[8] Fornero, E. L., Vecchietti, J., Rodrigues,
M. B., Hernández-Garrido, J. C., Bonivardi, A. L.,
"Cooperative role of cobalt and gallium under the ethanol steam reforming on Co/CeGaOx", International Journal of Hydrogen Energy, 47(41), pp. 18018-18031, (2022).
[9] Bepari, S., Sarkar, J. J., Pradhan, N. C., "Kinetics of ethanol steam reforming over Ni/Olivine catalyst", International Journal of Hydrogen Energy, (2022).
[10] Ruocco C., Palma V., Ricca A., "Experimental and kinetic study of oxidative steam reforming of bioethanol over fresh and spent bimetallic catalysts", Chemical Engineering Journal, 337,
pp. 119778, (2019).
[11] Li, M., Guo, W., Jiangs, R., Zhao, L., Shan, H., "Decomposition of ethanol on Pd(111), a density functional theory study", Langmuir, 26, pp. 1879–1888, (2010).
[12] Rodríguez-Gómez, A., Dorado, F., Sánchez, P., de la Osa, A. R., "Boosting hydrogen and chemicals production through ethanol electroreforming on Pt-transition metal anodes", Journal of Energy Chemistry 70, pp. 394-406, (2022).
[13] Sutton, J. E., Vlachos, D. G., "Ethanol activation on closed-packed surfaces, Industrial Engineering Chemistry Research", 54, pp. 4213-4225, (2015).
[14] Bepari, S, Kuila, D., Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. Int J Hydrogen Energy 2019; 45(36), 18090-113.
[15] Ramkiran, A., Vo, D. V. N., Mahmud, M. S., "Syngas production from ethanol dry reforming using Cu-based perovskite catalysts promoted with rare earth metals", International Journal of Hydrogen Energy,  46(48), pp. 24845-24854, (2021).
[16] Afolabi, A. T. F., Kechagiopoulos, P. N., Liu, Y., Li, C. -Z., "Kinetic features of ethanol steam reforming and decomposition using a biochar-supported Ni catalyst", Fuel Processing Technology 212, p. 106622, (2021).
[17] Yousefi Amiri, T., Ghasemzageh, K., Iulianelli, A., "Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review", Chemical Engineering Processing - Process Intensification, 157, p. 108148, (2020).
[18] Rossetti, I., Compagnoni, M., Torli, M., "Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells 1. Thermodynamic and kinetic analysis”, Chemical Engineering Journal, 281, pp. 1024-1035, (2015).
[19] Gallucci, F., Van Sint Annaland, M., Kuipers, J. A. M., "Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study", International Journal of hydrogen energy, 35, pp. 1659-1668, (2010).
[20] Sahoo, D. R., Vajpai, S., Patel, S., Pant, K. K., "Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst”, Chemical Engineering Journal 125, pp. 139–147, (2007).
[21] Bej, B., Bepari, S., Pradhan, N. C., Neogi, S., "Production of hydrogen by dry reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst", Catalysis Today, 291, pp., 58-66, (2017).
[22] Jin, Y., Rui Z., Tian, Y., Lin Y., Li, Y., "Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS", International Journal of Hydrogen Energy, 35,
pp. 6691-6698, (2010).