بررسی پارامترهای مؤثر بر لخته‌سازی ریزجلبک Chlorella sp. به‌وسیلۀ آلوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی مهندسی شیمی، دانشگاه پیام نور

2 دکتری مهندسی شیمی، دانشگاه صنعتی امیرکبیر

چکیده

ریزجلبک‌هایی که قابلیت رشد در آب دریا را دارند گزینۀ‌ مناسب تولید بیودیزل به‌شمار می‌روند، با این حال جداسازی سلول‌های ریزجلبک از محیط کشت به‌دلیل اندازۀ بسیارکوچک سلول‌ها به‌همراه غلظت پایین، یکی از چالش‌های اصلی در تولید بیودیزل با این ریزاندام‌هاست. در میان شگردهای مختلف برداشت سلول که به‌صورت تجاری به‌کار گرفته شده، لخته‌سازی آسان‌ترین و مقرون‌به‌صرفه‌ترین روش در تولید بیودیزل است.
در مطالعۀ حاضر، روش طراحی فاکتوریل کامل برای بررسی اثر مشخصه‌های غلظت سلولی،
pH و میزان مادۀ لخته‌کننده بر جداسازی زیست‌تودۀ گونۀ Chlorella sp. به‌وسیلۀ آلوم مطالعه شد. نتایج نشان می‌دهد که میزان مادۀ لخته‌کننده، غلظت سلولی و نیز برهم‌کنش متقابل pH و میزان مادۀ لخته‌کننده، اصلی‌ترین مشخصه‌های مؤثر در لخته‌سازی سلول‌ها به‌وسیلۀ آلوم هستند. مشاهده شد که بیشترین میزان جداسازی سلولی به‌ازای مادۀ لخته‌کنندۀ مصرفی (معادل 05/7 گرم سلول به‌ازای هر گرم از مادۀ لخته‌کنندۀ مصرفی) در چگالی سلولی 3=550OD، 6=pH و میزان مادۀ لخته‌کنندۀ 200 میلی‌گرم بر لیتر حاصل می‌شود. افزایش pH باعث افزایش میزان مادۀ لخته‌کنندۀ مصرفی می‌شود و از طرف دیگر غلظت سلولی بالاتر باعث کاهش میزان مادۀ لخته‌کننده به‌ازای میزان سلول‌های جداشده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Parameters Effective on Flocculation of Chlorella sp. Microalgae with Alum

نویسندگان [English]

  • F. Mohseni 1
  • A. Moosavi Zenooz 2
1 Instructor of Chemical Engineering, Payame Noor University
2 Ph. D. in Chemical Engineering, Amirkabir University of Technology
چکیده [English]

Microalgae that can grow in seawater are considered as a source for biodiesel. Still, the low concentration and small size of microalgae cells are the main challenges in separation of biomass for biodiesel production. Among different commercial techniques for separation and dewatering, flocculation is considered the most efficient one. In this study, a full factorial design was used for studying the effect of cell concentration, pH and flocculant dosage on efficiency of Chlorella sp. flocculation with alum. The results have shown that flocculant dosage and interaction between pH and flocculant dosage are the most effective parameters in this regard. It was observed that the highest amount of flocculation efficiency per unit of coagulant consumed (7.05 g of DW cell per g of Alum) was obtained at cell density of OD550=3, pH=6, and coagulant amount of 200 mg L-1. Increase in pH amount led to increase in consumption of flocculant and increase in cell concertation led to decrease in flocculant consumption.

کلیدواژه‌ها [English]

  • flocculation
  • microalgae
  • Chlorella sp
  • alum

 

[1]        Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B., "A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions", Bioresource Technology, 301: p. 122804, (2020).
[2]        Chhandama, M. V. L., Satyan, K. B., Changmai, B., Vanlalveni, C., Rokhum, S. L., "Microalgae as a feedstock for the production of biodiesel: A review", Bioresource Technology Reports, 15: p. 100771, (2021).
[3]        Sims, R. E. H., Rogner, H., Gregory, K., "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation", Energy Policy, 31 (13), pp. 1315-1326, (2003).
[4]        Tang, D., Guo Yong, Y., Koyande, A., Kit Wayne, C., Vo, D., "Green technology for the industrial production of biofuels and bioproducts from microalgae: a review", Environmental Chemistry Letters, 18, (2003).
[5]        Pathak, G., Das, D., Rajkumari, K., Rokhum, S. L., "Exploiting waste: towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst", Green Chemistry, 20 (10), pp. 2365-2373, (2018).
[6]        Peng, L., Fu, D., Chu, H., Wang, Z., Qi, H., "Biofuel production from microalgae: a review", Environmental Chemistry Letters, 18 (2), pp. 285-297, (2020).
[7]        Gharabaghi, M., Delavai Amrei, H., Moosavi Zenooz, A., Shahrivar Guzullo, J., Zokaee Ashtiani, F., "Biofuels: Bioethanol, Biodiesel, Biogas, Biohydrogen from Plants and Microalgae"in" CO2 Sequestration, Biofuels and Depollution", Springer International Publishing, Cham, pp. 233-274, (2015).
[8]        Barati, B., Zeng, K., Baeyens, J., Wang, S., Addy, M., Gan, S., El-Fatah Abomohra, A., "Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration", Biomass and Bioenergy, 145, p. 105927, (2021).
[9]        Herrera, A., D’Imporzano, G., Acién Fernandez, F. G., Adani, F., "Sustainable production of microalgae in raceways: Nutrients and water management as key factors influencing environmental impacts", Journal of Cleaner Production, 287, p. 125005, (2021).
[10]      Wang, B., Li, Y., Wu, N., Lan, C. Q., "CO2 bio-mitigation using microalgae", Applied Microbiology and Biotechnology, 79 (5), pp. 707-718, (2008).
[11]      Syafaini Japar, A., Sobri Takriff, M., Haiza Mohd Yasin, N., "Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition", Algal Research, V.53, p. 102163, (2021).
[12]      Rashedi, H., Yazdian, F., NaghizadehGharabaghi, S., "Microbial Enhanced Oil Recovery” in "Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites", IntechOpen, (2012).
[13]      Moosavi Zenooz, A., Zokaee Ashtiani, F., Ranjbar, R., Javadi, N., "Synechococcus sp (PTCC 6021) cultivation under different light irradiances-Modeling of growth rate-light response", Preparative Biochemistry & Biotechnology, 46 (6), pp. 567-574, (2016).
[14]      Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., Morones-Ramírez, J. R., "Biomass and lipid induction strategies in microalgae for biofuel production and other applications", Microbial Cell Factories, 18 (1), pp. 019-1228, (2019).
[15]      Khan, M. I., Shin, J. H., Kim, J. D., "The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products", Microbial Cell Factories, 17 (1), p. 36, (2018).
[16]      Salim, S., Bosma, R., Vermuë, M. H., Wijffels, R. H., "Harvesting of microalgae by bio-flocculation", Journal of Applied Phycology, 23 (5), pp. 849-855, (2011).
[17]      Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., Xu, J., "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass", Renewable and Sustainable Energy Reviews, 135, p. 110209, (2021).
[18]      Lucakova, S., Branyikova, I., Kovacikova, S., Pivokonsky, M., Filipenska, M., Branyik, T., Ruzicka, M. C., "Electrocoagulation reduces harvesting costs for microalgae", Bioresource Technology, 323, p. 124606, (2021).
[19]      Álvarez, X., Jiménez, A., Cancela, Á., Valero, E., Sánchez, Á., "Harvesting freshwater algae with tannins from the bark of forest species: Comparison of methods and pelletization of the biomass obtained", Chemosphere, 268, p. 129313, (2021).
[20]      Chisti, Y., "Biodiesel from microalgae", Biotechnology Advances, 25(3), pp. 294-306, (2007).
[21]      Uduman, N., Qi, Y., Danquah, M., Hoadley, A., "Marine microalgae flocculation and focused beam reflectance measurement", Chemical Engineering Journal, 162, pp. 935-940. (2010).
[22]      Gregory, J., "Flocculation Fundamentals” in"I Encyclopedia of Colloid and Interface Science", Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 459-491 (2013).
[23]      Malik, S., Khan, F., Atta, Z., Habib, N., Haider, M., Wang, N., Alam, M. A., Jambi, E., Gull, M., Mehmood, M., Zhu, H., "Microalgal flocculation: Global research progress and prospects for algal biorefinery", Biotechnology and Applied Biochemistry, 67, (2019).
[24]      Ogbonna, C. N., Nwoba, E. G., "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review", Renewable and Sustainable Energy Reviews, 139, p. 110690, (2021).
[25]      Papazi, A., Makridis, P., Divanach, P., "Harvesting Chlorella minutissima using cell coagulants", Journal of Applied Phycology, 22 (3), pp. 349-355, (2010).
[26]      Molina Grima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., Chisti, Y, "Recovery of microalgal biomass and metabolites: process options and economics", Biotechnology Advances, 20 (7), pp. 491-515, (2003).
[27]      Vandamme, D., Gheysen, L., Muylaert, K., Foubert, I., "Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum", Separation and Purification Technology, 194, pp. 362-367, (2018).
[28]      Vandamme, D., Foubert, I., Muylaert, K., "Flocculation as a low-cost method for harvesting microalgae for bulk biomass production", Trends in Biotechnology, 31 (4), pp. 233-239, (2013).
[29]      Eldridge, R., Hill, D., Gladman, B., "A comparative study of the coagulation behaviour of marine microalgae", Journal of Applied Phycology, 24, (2012).
[30]      Henderson, R. K., Parsons, S. A., Jefferson, B., "Successful Removal of Algae through the Control of Zeta Potential", Separation Science and Technology, 43 (7), pp. 1653-1666, (2008).
[31]      Reyes, J. F., Labra, C., "Biomass harvesting and concentration of microalgae scenedesmus sp. cultivated in a pilot phobioreactor", Biomass and Bioenergy, 87: pp. 78-83, (2016).
[32]      Sanyano, N., Chetpattananondh, P., Chongkhong, S., "Optimization of flocculation of marine Chlorella sp. by response surface methodology", proceedings of TICHE International Conference at Hatyai, Songkhla, Thailand, (2011).
[33]      Shen, Y., Cui, Y., Yuan, W., "Flocculation optimization of microalga Nannochloropsis oculata", Applied Biochemistry and Biotechnology, 169 (7), pp. 2049-63, (2013).
[34]      Duan, J., Gregory, J., "Coagulation by hydrolysing metal salts", Advances in Colloid and Interface Science, 100-102, pp. 475-502, (2003).
[35]      Gregory, J., Duan, J., "Hydrolyzing metal salts as coagulants", Pure and Applied Chemistry, 73 (12), pp. 2017-2026, (2001).
[36]      Ríos, S. D., Salvadó, J., Farriol, X., Torras, C., "Antifouling microfiltration strategies to harvest microalgae for biofuel", Bioresource Technology, 119, pp. 406-418, (2012).
[37]      Moosavi Zenooz, A., Zokaee Ashtiani, F., Ranjbar, R., Nikbakht, F., Bolouri, O., "Comparison of different artificial neural network architectures in modeling of Chlorella sp. Flocculation", Preparative Biochemistry & Biotechnology, 47 (6), pp. 570-577, (2017).
[38]      Henderson, R., Parsons, S. A., Jefferson, B., "The impact of algal properties and pre-oxidation on solid–liquid separation of algae", Water Research, 42 (8), pp. 1827-1845, (2008).
[39]      Wyatt, N., Gloe, L., Brady, P., Hewson, J., Grillet, A., Hankins, M., Pohl, P., "Critical conditions for ferric chloride-induced flocculation of freshwater algae", Biotechnology and bioengineering, 109, pp. 493-501, (2012).
[40]      Parks, G. A., "Aqueous Surface Chemistry of Oxides and Complex Oxide Minerals", in "Equilibrium Concepts in Natural Water Systems", American Chemical Society, pp. 121-160, (1967).
[41]      Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., Li, A., "Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium", Bioresource Technology, 110, pp. 496-502, (2012).
[42]      Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S., Gressel, J., "Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production", Biotechnology Advances, 30 (5), pp. 1023-1030, (2012).
[43]      Cañizares, P., Martínez, F., Jiménez, C., Lobato, J., Rodrigo, M. A., "Comparison of the Aluminum Speciation in Chemical and Electrochemical Dosing Processes", Industrial & Engineering Chemistry Research, 45 (26), pp. 8749-8756, (2006).
[44]      Bottero, J. Y., Cases, J. M., Fiessinger, F., Poirier, J. E., "Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions", The Journal of Physical Chemistry, 84 (22), pp. 2933-2939, (1980).
[45]      Dentel, S. K., "Application of the precipitation-charge neutralization model of coagulation", Environmental Science & Technology, 22 (7), pp. 825-832, (1988).
[46]      Mohseni, F., Moosavi Zenooz, A., "Flocculation of Chlorella vulgaris with alum and pH adjustment", Biotechnology and Applied Biochemistry, pp. 1-9, (2021).