مطالعۀ تأثیر نانوخاک رس و ترکیب آن با دوده بر خواص فیزیکی و مکانیکی لاستیک استایرن ـ بوتادین (SBR)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پلیمر، دانشگاه صنعتی قم

2 دانشیار مهندسی پلیمر، دانشگاه صنعتی قم

چکیده

در این پژوهش تأثیر اضافه‌کردن نانوخاک رس اصلاح‌شده به لاستیک SBR بر رفتار پخت، میزان جذب روغن و خواص مکانیکی نظیر مدول، استحکام کششی و کرنش در نقطۀ شکست، سختی و مقاومت سایشی بررسی شده است. در ادامه تأثیر مقدار دوده و جای‌گزینی بخشی از آن با تقویت‌کنندۀ نانورس بر استحکام کششی، ازدیاد طول در نقطۀ شکست، سختی و مقاومت سایشی نیز بررسی شد. با افزودن نانوذرات، استحکام کششی و ازدیاد طول تا پارگی به‌طور قابل توجهی افزایش یافت که بیشترین افزایش در مقدار phr10 نانوذرات رخ داد. بررسی نتایج آزمون رئومتری نشان داد که با افزایش میزان نانوذرات، زمان برشتگی و زمان پخت بهینه، کاهش و سرعت پخت افزایش یافت. اضافه‌کردن نانوذرات به ماتریس پلیمری باعث بهبود مقاومت سایشی شد و حجم ساییده‌شدۀ نمونه­ها با افزایش مقدار نانو به‌طور چشم‌گیری نسبت به نمونۀ خالص SBR کاهش یافت. افزودن phr 10 خاک رس در حضور phr 20 دوده، مقدار کرنش تا نقطۀ پارگی و استحکام کششی به‌ترتیب به‌میزان 300 درصد و MPa 3 نسبت‌به نمونۀ بدون دوده افزایش یافت که بیانگر تأثیر هم‌افزایی دوده و نانورس در بهبود خواص مکانیکی نمونه­هاست. با جای‌گزینی phr 10 دوده با همین مقدار نانوذرات خاک رس، استحکام کششی، کرنش در نقطۀ شکست و سختی به‌ترتیب به‌میزان 30%، 24% و 5% افزایش و میزان جذب روغن و میزان حجم ساییده‌شده به‌ترتیب به‌میزان 23% و 11% کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Nanoclay and Its Hybrid with Carbon Black on Physical and Mechanical Properties of Styrene Butadiene Rubber

نویسندگان [English]

  • S. A. Mousavi 1
  • J. Khademzadeh Yeganeh 2
1 M. Sc. Student of Polymer Engineering, Qom University of Technology
2 Associate Professor of Polymer Engineering, Qom University of Technology
چکیده [English]

In this study, the effect of adding nanoclay and carbon black to SBR on curing behavior, oil absorption and mechanical properties such as tensile strength and strain at break, hardness and abrasion resistance were investigated. At the end, we investigated the effect of carbon black (CB) and replacement a portion of CB with modified clay on tensile strength, elongation at break, hardness and abrasion resistance of SBR. Tensile strength and elongation at break were significantly improved upon addition of nanoclay and the optimum amount of nanoclay was 10 phr. The rheometric test indicated that as the nanoparticles loading increases, the scorch time and optimum cure time decrease and the cure rate increases. Adding nanoparticles to the polymer matrix improved the abrasion resistance and the abrasive volume of the samples decreased significantly with addition of nanoclay content. Adding 10 phr nanoclay to SBR containing 20 phr carbon black elongation at break and tensile strength exhibited a siginificant increase of 300% and 3 MPa respectively indicationg synergisty of carbon black and nanoclay in improving mechanical properties of SBR. Upon replacement of 10 phr CB with clay tensile strength, elongation at break and hardness improved 30%, 24% and 5% respectively and oil absorption and abrasive volume decreases 23% and 11% respectively.

کلیدواژه‌ها [English]

  • SBR
  • Nanoclay
  • Carbon Black
  • Cure Behavior
  • Mechanical Properties

 

[1]        Ciullo, P. A., Hewitt, N., "The Rubber Formulary", First edition, Noyes Publications, New York,
pp. 121-182, (1999).
[2]        Morton, M., "Rubber technology", Third edition, Springer Science & Business Media Dordrecht, New York, p. 21, (1999).
[3]        Zhang, H., Wang, Y., Wu, Y., Zhang, L., Yang, J., "Study on flammability of montmorillonite/styrene‐butadiene rubber (SBR) nanocomposites", Journal of applied polymer science, Vol. 97(3), pp.844-849, (2005).
[4]        Khalf, A. I., Nashar, D. E., Maziad, N. A., "Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends", Materials and Design, Vol. 31(5), pp.2592-2598, (2010).
[5]        Vishvanathperumal, S., Gopalakannan, S., "Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite", Silicon, Vol. 11(1), pp. 117-135, (2019).
[6]        Kim, W., Kang, B. S., Cho, S. G., Ha, C. S., Bae,
J. W., "Styrene butadiene rubber-clay nanocomposites using a latex method: morphology and mechanical properties", Composite Interfaces, Vol. 14, pp. 409-425, (2007).
[7]        Zhang, H., Wang, Y., Wu, Y., Zhang, L., Yang, J., "Study on flammability of montmorillonite/styrene‐butadiene rubber (SBR) nanocomposites", Journal of applied polymer science, Vol. 97(3), pp. 844-849, (2005).
[8]        Zhang, L., Wang, Y., Wang, Y., Sui, Y., Yu, D., "Morphology and mechanical properties of clay/styrene‐butadiene rubber nanocomposites", Journal of Applied Polymer Science, Vol. 78(11), pp. 1873-1878, (2000).
[9]        Sadhu, S., Bhowmick, A. K., "Preparation and characterization of styrene butadiene rubber based nanocomposites and study of their mechanical properties", Advanced Engineering Materials, Vol. 6(9), pp. 738-742, (2004).
[10]      Monfared, A., Jalali-Arani, A., Mohammadi, N., "The effect of epoxidized natural rubber and two kinds of organoclay upon molecular interaction, structure and mechanical properties of (styrene-butadiene rubber/acrylonitrile-butadiene rubber/organoclay) nanocomposites", Journal of Macromolecular Science, Part B, Vol. 53(5), pp. 918-930, (2014).
[11]      Monfared, A., Jalali-Arani, A. "Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization", Applied Clay Science, Vol. 108, pp. 1-11, (2015).
[12]      Tavakoli, M., Katbab, A. A., Nazockdast, H.,
"Effect of the Compatibilizer Upon the Properties of Styrene-butadiene Rubber Organoclay Nanocomposites", Iran. J. Polym., Sci. Technol.(In Persian), Vol. 23, pp. 65-74, (2010).
[13]      Rajasekar, R., Heinrich, G., Das, A., Das, C. K., "Development of SBR-nanoclay composites with epoxidized natural rubber as compatibilizer", Research Letters in Nanotechnology, Vol. 2009, pp. 1-5, (2009).
[14]      Mohan, T. P., Kuriakose, J., Kanny, K., "Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadine rubber (NR–SBR)", Journal of Industrial and Engineering Chemistry, Vol. 17(2), pp. 264-270, (2011).
[15]      Basiri, L., Bakhshandeh, G. R., Naderi, G., Shokoohi, S., "Elastomer Nanocomposites Based on Organoclay/IIR/EPDM: Microstructure and Mechanical Properties", Iran. J. Polym. Sci. Technol.(In Persian), Vol. 24, pp. 343-353, (2012).
[16]      Sengupta, A., Konar, B. B., "Cure characteristics of ethylene propylene diene rubber‐polypropylene blends. I. Calculation of state of cure in blends containing conventional sulfur curing system under variable time‐temperature conditions", Journal of applied polymer science, Vol. 66(7), pp. 1231-1236, (1997).
[17]      Nor, N. M., Othman, N., "Effect of filler loading on curing characteristic and tensile properties of palygorskite natural rubber nanocomposites", Procedia Chemistry, Vol. 19, pp. 351-358, (2016).
[18]      Akherati Sany, S. R., Mortezaei, M., Amiri Amraei, I., "Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles", Iranian Journal of Polymer Science and Technology, Vol. 30(1), pp. 3-17, (2017).
[19]      Qu, L., Huang, G., Zhang, P., Nie, Y., Weng, G., Wu, J., "Synergistic reinforcement of nanoclay and carbon black in natural rubber", Polymer International,
Vol. 59(10), pp. 1397-1402, (2010).
[20]      Wang, Y., Zhang, H., Wu, Y., Yang, J., Zhang, L., "Structure and properties of strain‐induced crystallization rubber–clay nanocomposites by
co‐coagulating the rubber latex and clay aqueous suspension", Journal of applied polymer science, Vol. 96(2), pp. 318-323, (2005).
[21]      Kim, W., Kang, B. S., Cho, S. G., Ha, C. S., Bae, J. W., "Styrene butadiene rubber-clay nanocomposites using a latex method: morphology and mechanical properties", Composite Interfaces, Vol. 14, pp. 409-425, (2007).
[22]      Sengupta, R., Chakraborty, S., Bandyopadhyay, S. A., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A. S., "A short review on rubber/clay nanocomposites with emphasis on mechanical properties", Polymer Engineering & Science, Vol. 47(11), pp. 1956-1974, (2007).
[23]      Brown, R. P., Soulagnet, G., "Microhardness profiles on aged rubber compounds", Polymer testing, Vol. 20(3), pp. 295-303, (2001).
[24]      Mostafa, A., Abouel-Kasem, A., Bayoumi, M. R., El-Sebaie, M. G., "Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds", Materials and Design, Vol. 30(5), pp. 1561-1568, (2009).
[25]      Tangudom, P., Thongsang, S., Sombatsompop, N., "Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene–butadiene rubber and their blends reinforced with silica hybrid fillers", Materials and Design, Vol. 53, pp. 856-864, (2014).
[26]      Mathew, L., Narayanankutty, S. K., "Cure characteristics and mechanical properties of HRH bonded nylon-6 short fiber-nanosilica-acrylonitrile butadiene rubber hybrid composite", Polymer-Plastics Technology and Engineering, Vol. 48(1), pp. 75-81, (2008).
[27]      Chakraborty, S., Mallick, P. P., Dasgupta, S., Mukhopadhyay, R., "Stearyl amine ethoxylate (SAM) grafted Montmorillonite clay-styrene butadiene rubber (SBR) nanocomposites", International Journal of Polymeric Materials and Polymeric Biomaterials", Vol. 62(4), pp. 220-225, (2013).
[28]      Praveen, S., Chattopadhyay, P. K., Albert, P. A., Dalvi, V. G., Chakraborty, B. C., Chattopadhyay, S., "Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure", Composites Part A: Applied Science and Manufacturing, Vol. 40(3), pp. 309-316, (2009).