تعیین نرخ انتقال اکسیژن در ریۀ ‌مصنوعی نوزاد به‌روش سامانۀ سولفیت

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار مهندسی شیمی، دانشگاه ولی‌عصر(عج) رفسنجان

چکیده

مهم‌ترین شاخص در طراحی و ساخت ریۀ مصنوعی متشکل از غشا‌های‌توخالی، نرخ‌ انتقال اکسیژن (OTR) است. روش‌های تعیین OTR در ریۀ ‌مصنوعی پیچیده هستند و نیاز به حسگرها و ابزار بسیار دقیقی دارند. سیال‌هایی که برای تعیین OTR در ریۀ ‌مصنوعی استفاده شده‌اند شامل خون، آب و مخلوط آب و گلیسرول هستند که هریک نقص‌ها و مشکلات به‌کارگیری متعددی دارند. در این مقاله سامانۀ سولفیت3 (SS) به‌عنوان سیالی که می‌تواند جای‌گزین خون در تعیین OTR باشد و مشکلات خون و نیاز به روابط و ابزار خاص نداشته باشد، در نظر گرفته می‌شود. به این منظور ابتدا شرایط OTR در ریۀ ‌مصنوعی با تعیین غلظت مناسب کاتالیزور(کبالت) در SS (دبی mL/min 2000 ( گاز و محلول سولفیت)) بهینه می‌شود، سپس نتایج حاصل از SS در دبی‌های (mL/min 2000 -500) با داده‌های خون در ریۀ ‌مصنوعی، مقایسه می‌شود. نتایج نشان می‌دهد که OTR متوسط SS با OTR متوسط خون در دبی mL/min 2000 کمتر از 10% اختلاف دارد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Oxygen Transfer Rate in an Neonatal Artificial Lung by Sulfite system Method

نویسنده [English]

  • H. Eghbali
Assistant Professor of Chemical Engineering, Vali-e-Asr University of Rafsanjan
چکیده [English]

The most important parameter in the design and fabrication of an artificial lung consisting of hollow membranes is the oxygen transfer rate (OTR). OTR determination methods in the artificial lung are complex and require highly accurate sensors and instruments. The fluids used to determine OTR in the artificial lung are blood, water, and a mixture of water and glycerol, each of which has multiple drawbacks and problems. In this paper, the sulfite system (SS) is considered as a fluid that can replace blood in determining OTR and does not have blood problems and the need for special relationships and tools. For this purpose, the OTR conditions in the artificial lung are first optimized by determining the appropriate concentration of catalyst (cobalt) in SS (flow (gas and sulfite solution) 2000 mL/min). The results of SS at a flow rate (500-2000 mL/min) are then compared with blood data in an artificial lung. The results show that the mean OTR of SS is less than 10% different from the mean OTR of blood at 2000 mL / min flow.

 

[1]        Eghbali, H., Nava, M. M., Mohebbi-Kalhori, D., Raimondi, M. T., "Hollow fiber bioreactor technology for tissue engineering applications", The International journal of artificial organs, 39: pp. 1-15, (2016).
[2]        Hexamer, M., Werner, J., "A mathematical model for the gas transfer in an oxygenator” . IFAC Proceedings Volumes, 36(15): pp. 409-414, (2003).
[3]        Kashefi, A,. Mottaghy, K., "Fluid dynamic and gas exchange performance of a new capillary membrane oxygenator (CMO) ", Artificial Organs, 23(7), (1999).
[4]        Lim, M., "The history of extracorporeal oxygenators", Anaesthesia, 61(10): pp. 984-995, (2006).
[5]        Park, A., Song, Y., Yi, E., Duy Nguyen, B. T., Han, D., Sohn, E., Park, Y., Jung, J., Lee, Y.M., Cho, Y. H., Kim, J. F., "Blood oxygenation using fluoropolymer-based artificial lung membranes", ACS Biomaterials Science & Engineering, 6(11): pp. 6424-6434, (2020).
[6]        Pflaum, M., Peredo, A. S., Dipresa, D., De, A., Korossis, S., "Membrane bioreactors for (bio-) artificial lung, in Current Trends and Future Developments on (Bio-) Membranes", Elsevier,
pp. 45-75, (2020).
[7]        Federspiel, W. J., Henchir, K. A., "Lung, artificial: basic principles and current applications", Encyclopedia of Biomaterials and Biomedical Engineering, 9: p. 910, (2004).
[8]        Popel, A. S., "Theory of oxygen transport to tissue", Critical Reviews in Biomedical Engineering, 17(3): p. 257, (1989).
[9]        Gage, K. L., Gartner, M. J., Burgreen, G. W., Wagner, W. R., "Predicting membrane oxygenator pressure drop using computational fluid dynamics", Artificial organs, 26(7): pp. 600-607, (2002).
[10]      Vaslef, S. N., Cook, K. E., Leonard, R. J., Mockros, L. F., Anderson, R. W., "Design and evaluation of a new, low pressure loss, implantable artificial lung", ASAIO Journal American Society for Artificial Internal Organs, 40(3): pp. M522-6, (1994).
[11]      Zwischenberger, J. B., Anderson, C. M., Cook, K. E., Lick, S. D., Mockros, L. F., Bartlett, R. H., "Development of an implantable artificial lung: challenges and progress", ASAIO journal, 47(4): pp. 316-320, (2001).
[12]      Orizondo, R. A., Gino, G., Sultzbach, G., Madhani, S. P., Frankowski, B. J., Federspiel, W. J., "Effects of hollow fiber membrane oscillation on an artificial lung", Annals of biomedical engineering, 46(5): pp. 762-771, (2018).
[13]      Mallabiabarrena, I., H. E. Albino. , L. K. von Segesser., "A novel automated in-vitro system for evaluating hollow fiber oxygenators”, ASAIO Journal, 46(2): 189, (2000).
[14]      Salimi, S., Henseler, A., Mottaghy, K., "Non equilibrium O2-dissociation curves (ne-ODC): effect of PCO2, shear rate and hematocrit O 075", Artificial Organs, 29(9): pp. 733-734, (2005).
[15]      Madhani, S. P., Frankowski, B. J., Federspiel, W. J., "Fiber bundle design for an integrated wearable artificial lung", American Society for Artificial Internal Organs, 63(5): p. 631, (2017).
[16]      Rakhorst, G., Erasmus, M. E., Kashefi, A., Gu, Y. J., Elstrodt, J. M., Oedekoven, B., Mottaghy, K., "Initial animal experiments for an implantable oxygenator", The International Journal of Artificial Organs, 29(5): pp. 517-517, (2006).
[17]      Alghanem, F., Davis, R. P., Bryner, B. S., Hoffman, H. R., Trahanas, J., Cornell, M., Rojas-Peña, A., Bartlett, R. H., Hirschl, R. B., "The implantable pediatric artificial lung: Interim report on the development of an end-stage lung failure model", American Society for Artificial Internal Organs, 61(4): p. 453, (2015).
[18]      Nolan, H., Wang, D., Zwischenberger, J. B., "Artificial lung basics: fundamental challenges, alternative designs and future innovations", Organogenesis, 7(1): pp. 23-27, (2011).
[19]      Swol, J., Shigemura, N., Ichiba, S., Steinseifer, U., Anraku, M. Lorusso, R., "Artificial lungs––Where are we going with the lung replacement therapy?” Artificial Organs, 44(11): pp. 1135-1149, (2020).
[20]      Wickramasinghe, S. Han, B., "Mass and momentum transfer in commercial blood oxygenators", Desalination, 148(1-3): pp. 227-233, (2002).
[21]      Wickramasinghe, S. R., Kahr, C. M., Han, B., "Mass transfer in blood oxygenators using blood analogue fluids", Biotechnology progress, 18(4): pp. 867-873, (2002).
[22]      Wickramasinghe, S., Garcia, J., Han, B., "Mass and momentum transfer in hollow fibre blood oxygenators", Journal of membrane science,
208(1-2): pp. 247-256, (2002).
[23]      Nagase, K., Kohori, F., Sakai, K., "Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers", Biochemical engineering journal,. 24(2): pp. 105-113, (2005).
[24]      Nagase, K., Kohori, F., Sakai, K., Nishide, H., "Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution", Journal of membrane science, 254(1-2): pp. 207-217, (2005).
[25]      Goerke, A., Leung, J., Wickramasinghe, S., "Mass and momentum transfer in blood oxygenators", Chemical Engineering Science, 57(11): pp. 2035-2046, (2002).
[26]      Kim, G. B., Kim, S. J., Kim, M. H., Hong, C. U., Kang, H. S., "Development of a hollow fiber membrane module for using implantable artificial lung", Journal of Membrane Science, 326(1): pp. 130-136, (2009).
[27]      Hermann, R., Walther, N., Maier, U., Büchs, J., "Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation", Biotechnology and Bioengineering, 74(5): pp. 355-363, (2001).
[28]      Wickramasinghe, S., Garcia, J., Han, B. J.J. O. M. S., "Mass and momentum transfer in hollow fibre blood oxygenators", Journal of membrane science,
208(1-2): pp. 247-256, (2002).
[29]      Wickramasinghe, S., Han, B. J. D., "Mass and momentum transfer in commercial blood oxygenators", 148(1-3): pp. 227-233, (2002).
[30]      Wickramasinghe, S. R., Kahr, C. M., Han, B. J. B. P., "Mass transfer in blood oxygenators using blood analogue fluids", Biotechnology progress, 18(4):
pp. 867-873, (2002).
[31]      Nagase, K., Kohori, F., Sakai, K., Nishide, H., "Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution” Journal of membrane science, 254(1-2): pp. 207-217, (2005).
[32]      Nagase, K., Kohori, F., Sakai, K. J. B. E. J., "Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers", Biochemical engineering journal, 24(2): pp. 105-113, (2005).
[33]      Goerke, A., Leung, J., Wickramasinghe, S. J. C. E. S., "Mass and momentum transfer in blood oxygenators", Chemical Engineering Science, 57(11): pp. 2035-2046, (2002).
[34]      Kensy, F., Zimmermann, H. F., Knabben, I., Anderlei, T., Trauthwein, H., Dingerdissen, U., Büchs, J., "Oxygen transfer phenomena in 48‐ well microtiter plates: Determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth", Biotechnology and bioengineering, 89(6): pp. 698-708, (2005).
[35]      Hermann, R., Lehmann, M., Büchs, J., "Characterization of gas–liquid mass transfer phenomena in microtiter plates", Biotechnology and bioengineering, 81(2): pp. 178-186, (2003).