مروری بر استفاده از چارچوب‏های آلی- فلزی به‌عنوان فوتوکاتالیست برای احیای دی‌اکسیدکربن

نوع مقاله : مقاله مروری

نویسندگان

1 گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

2 گروه پژوهشی شیمی و فرآیند، پژوهشگاه نیرو، تهران، ایران

چکیده

در حال حاضر، ورود و انتشار بی‌رویۀ دی ­اکسیدکربن حاصل از احتراق سوخت‌های فسیلی به جو یکی از بزرگ‌ترین نگرانی‌ها دربارۀ آینده است. در این راستا، توسعۀ انرژی­ های پاک مبتنی بر نور خورشید یکی از راه‌کارهای مناسب برای تأمین انرژی در آینده است. فرایند احیای فوتوکاتالیستی دی­ اکسیدکربن روشی نسبتاً نوین است که علاوه بر جمع‌آوری و ذخیره ‏سازی انرژی خورشید در مواد با ارزش افزوده، از راه مصرف دی‏ اکسید‏کربن اثرات منفی گازهای گلخانه ­ای را نیز کاهش می ­دهد. تاکنون نیمه ­رساناهای مختلفی به‌عنوان فوتوکاتالیست در فرایند مذکور استفاده شده ­اند. چارچوب‏های آلی- فلزی با ویژگی­های یگانه‌ای مانند ساختار نواری و الکترونی، قابلیت تنظیم میزان جذب نور و جذب بالای دی­ اکسیدکربن، بسیار مورد توجه‏ اند. در این مطالعه جنبه ­های مختلف این مواد و راه­های بهبود عملکرد آن‏ها مانند استفاده از حساس ­کننده­ های نوری، ترکیب با نیمه‌رساناهای متداول، استفاده از کاتالیست‌های مولکولی و عامل­دار کردن با گروه­های آمینی برای جذب بالاتر دی­ اکسیدکربن بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview on the Use on Metal-Organic Frameworks as Photocatalysts for Reducing Carbon Dioxide

نویسندگان [English]

  • Afsanehsadat Larimi 1
  • Aliakbar Asgharinezhad 2
  • Mohsen Esmaeilpour 2
1 Chemical and Process Engineering Department, Niroo Research Institute, Tehran, Iran
2 Chemical and Process Engineering Department, Niroo Research Institute, Tehran, Iran
چکیده [English]

At present, the emission of carbon dioxide from the combustion of fossil fuels into the atmosphere is one of the biggest concerns for the future.
In this regard, the development of clean energy produced from sunlight is one of the appropriate solutions for energy supply in the future.
The process of photocatalytic reduction of carbon dioxide is a relatively new method that, collects and stores solar energy to value-added materials, while reduces the negative effects of greenhouse gases through the consumption of carbon dioxide. So far, various semiconductors have been used as photocatalysts in this process. Metal-organic frameworks with unique properties such as band and electron structure, adjustable light absorption and high carbon dioxide absorption are of great interest. In this study, different aspects of these materials and methods to improve their performance, such as the use of optical sensitizers, combination with conventional semiconductors, the use of molecular catalysts and functionalization with amine groups for adsorption of Carbon dioxide has been investigated.

کلیدواژه‌ها [English]

  • Carbon Dioxide Reduction
  • Energy Conversion
  • Metal-Organic Frameworks
  • Photocatalyst

 

[1]      Shown, I., Hsu, H. -C., Chang, Y. -C., Lin, C. -H., Roy, P. K., Ganguly, A., Wang, C. -H., Chang, J.-K., Wu, C.-I., Chen, L.-C., Chen, K.-H., "Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide", Nano Letters, 14: pp. 6097–6103, (2014).
[2]      Izumi, Y., "Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond", Coordination Chemistry Reviews, 257: pp. 171–186, (2013).
[3]        Corma, A., Garcia, H., "Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges", Journal of Catalysis, 308: pp. 168–175, (2013).
[4]        Zhang, W., Mohamed, A. R., Ong, W. -J., "Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?", Angewandte Chemie International Edition, 59: pp. 22894–22915, (2020).
[5]        Zhu, N. -N., Liu, X. -H., Li, T., Ma, J. -G., Cheng, P., Yang, G. -M., "Composite System of Ag Nanoparticles and Metal–Organic Frameworks for the Capture and Conversion of Carbon Dioxide under Mild Conditions", Inorganic Chemistry, 56: pp. 3414–3420, (2017).
[6]        White, J. L., Baruch, M. F., Pander, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., Zhang, T., Liao, K., Gu, J., Yan, Y., Shaw, T. W., Abelev, E., Bocarsly, A. B., "Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes", Chemical Reviews, 115: pp. 12888–12935, (2015).
[7]        Li, D., Kassymova, M., Cai, X., Zang, S. -Q., Jiang, H. -L., "Photocatalytic CO2 reduction over metal-organic framework-based materials", Coordination Chemistry Reviews, 412: pp. 213262, (2020).
[8]        Ikreedeegh, R. R., Tahir, M., "A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic  CO2 reduction to solar fuels", Journal of CO2 Utilization, 43: pp. 101381, (2021).
[9]        Alkhatib, I. I., Garlisi, C., Pagliaro, M., Al-Ali, K., Palmisano, G., "Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications", Catalysis Today, 340: pp. 209–224, (2020).
[10]      Yui, T., Kan, A., Saitoh, C., Koike, K., Ibusuki, T., Ishitani, O., "Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2", ACS Applied Materials & Interfaces, 3: pp. 2594–2600, (2011).
[11]      Yang, C. -C., Yu, Y. -H., van der Linden, B., Wu, J. C. S., Mul, G., "Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction?", Journal of the American Chemical Society, 132: pp. 8398–8406, (2010).
[12]      Nematollahi, R., Ghotbi, C., Khorasheh, F., Larimi, A., "Ni-Bi co-doped TiO2 as highly visible light response nano-photocatalyst for CO2 photo-reduction in a batch photo-reactor", Journal of CO2 Utilization, 41: pp. 101289, (2020).
[13]      Moradi, M., Khorasheh, F., Larimi, A., "Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4", Solar Energy, 211: pp. 100–110, (2020).
[14]      Moradi, M., Larimi, A., Khorasheh, F., Nematollahi, R., "Photocatalytic Reduction of Carbon dioxide to Renewable Methane using Titanium dioxide modified with Bismuth and Copper", Journal of Applied Research of Chemical -Polymer Engineering, 4:
pp. 43–55, In Persian, (2020).
[15]      Nematollahi, R., Larimi, A., Ghotbi, C., Khorasheh, F., Moradi, M., "Methane production by CO2 photo-reduction in the presence of TiO2 modified by Nickel and Copper", Applied Chemistry, 16: pp. 37–48, In Persian, (2021).
[16]      Liu, Q., Zhou, Y., Kou, J., Chen, X., Tian, Z., Gao, J., Yan, S., Zou, Z., "High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel", Journal of the American Chemical Society, 132: pp. 14385–14387, (2010).
[17]      Zhou, Y., Tian, Z., Zhao, Z., Liu, Q., Kou, J., Chen, X., Gao, J., Yan, S., Zou, Z., "High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light", ACS Applied Materials and Interfaces, 3: pp. 3594–3601, (2011).
[18]      Li, X., Pan, H., Li, W., Zhuang, Z., "Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts", Applied Catalysis A-general, 413:
pp. 103–108, (2012).
[19]      INOUE, T., FUJISHIMA, A., KONISHI, S., HONDA, K., "Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders", Nature, 277: pp. 637–638, (1979).
[20]      Matsuoka, M., Anpo, M., "Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 3: pp. 225–252, (2003).
[21]      Tahir, M., Amin, N. S., "Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels", Energy Conversion and Management, 76: pp. 194–214, (2013).
[22]      Kočí, K., Obalová, L., Lacný, Z., "Photocatalytic reduction of CO2 over TiO2 based catalysts", Chemical Papers, 62: pp. 1–9, (2008).
[23]      Schoedel, A., Ji, Z., Yaghi, O. M., "The role of metal–organic frameworks in a carbon-neutral energy cycle", Nature Energy, 1: pp. 16034, (2016).
[24]      Wang, D., Huang, R., Liu, W., Sun, D., Li, Z.,
"Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways", ACS Catalysis, 4: pp. 4254–4260, (2014).
[25]      Yuan, Z., Eden, M. R., Gani, R., "Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes", Industrial & Engineering Chemistry Research, 55:pp. 3383–3419, (2016).
[26]      Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., Yu, S. -H., Jiang, H. -L., "Visible-Light Photoreduction of CO2 in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States", Journal of the American Chemical Society, 137: pp. 13440–13443, (2015).
[27]      Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., Fu, X., Li, Z., "Studies on Photocatalytic CO2 Reduction over NH2-Uio-66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks", Chemistry – A European Journal, 19: pp. 14279–14285, (2013).
[28]      Shen, L., Liang, R., Wu, L., "Strategies for engineering metal-organic frameworks as efficient photocatalysts", Chinese Journal of Catalysis, 36:
pp. 2071–2088, (2015).
[29]      Chambers, M. B., Wang, X., Elgrishi, N., Hendon, C. H., Walsh, A., Bonnefoy, J., Canivet, J., Quadrelli, E. A., Farrusseng, D., Mellot-Draznieks, C., Fontecave, M., "Photocatalytic Carbon Dioxide Reduction with Rhodium-based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks", ChemSusChem, 8: pp. 603–608, (2015).
[30]      Izumi, Y., "Recent Advances (2012–2015) in the Photocatalytic Conversion of Carbon Dioxide to Fuels Using Solar Energy: Feasibilty for a New Energy", In: Advances in CO2 Capture, Sequestration, and Conversion (Vol. 1194). American Chemical Society: p. 1 (2015).
[31]      Zhou, H. -C. “Joe”, Kitagawa, S., "Metal–Organic Frameworks (MOFs)", Chemical Society Reviews, 43: pp. 5415–5418, (2014).
[32]      Hiroyasu, F., E., C. K., Michael, O., M., Y. O., "The Chemistry and Applications of Metal-Organic Frameworks", Science, 341: p. 1230444, (2013).
[33]      Coudert, F. -X., Fuchs, A. H., "Computational characterization and prediction of metal–organic framework properties", Coordination Chemistry Reviews, 307: pp. 211–236, (2016).
[34]      Lu, S. -I., Liao, J. -M., Huang, X. -Z., Lin, C. -H., Ke, S. -Y., Wang, C. -C., "Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study", Chemical Physics, 497: pp. 1–9, (2017).
[35]      Pillai, R. S., Jobic, H., Koza, M. M., Nouar, F., Serre, C., Maurin, G., Ramsahye, N. A., "Diffusion of Carbon Dioxide and Nitrogen in the Small-Pore Titanium Bis(phosphonate) Metal-Organic Framework MIL-91 (Ti): A Combination of Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations.", Chemphyschem: a European journal of chemical physics and physical chemistry, 18: pp. 2739–2746, (2017).
[36]      Prakash, M., Jobic, H., Ramsahye, N. A., Nouar, F., Damasceno Borges, D., Serre, C., Maurin, G., "Diffusion of H2, CO2, and Their Mixtures in the Porous Zirconium Based Metal–Organic Framework MIL-140A(Zr): Combination of Quasi-Elastic Neutron Scattering Measurements and Molecular Dynamics Simulations", The Journal of Physical Chemistry C, 119: pp. 23978–23989, (2015).
[37]      Huang, B., McGaughey, A. J. H., Kaviany, M., "Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations", International Journal of Heat and Mass Transfer, 50: pp. 393–404, (2007).
[38]      Skoulidas, A. I., "Molecular Dynamics Simulations of Gas Diffusion in Metal−Organic Frameworks:  Argon in CuBTC", Journal of the American Chemical Society, 126: pp. 1356–1357, (2004).
[39]      Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., Garcia, H., "Semiconductor behavior of a metal-organic framework (MOF).", Chemistry (Weinheim an der Bergstrasse, Germany), 13: pp. 5106–5112, (2007).
[40]      Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., García, H., "Water Stable
Zr–Benzenedicarboxylate Metal–Organic Frameworks  as Photocatalysts for Hydrogen Generation", Chemistry–A European Journal, 16: pp. 11133–11138, (2010).
[41]      Shen, L., Wu, W., Liang, R., Lin, R., Wu, L., "Highly dispersed palladium nanoparticles anchored on
UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst", Nanoscale, 5: pp. 9374–9382, (2013).
[42]      Long, J., Wang, S., Ding, Z., Wang, S., Zhou, Y., Huang, L., Wang, X., "Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations", Chemical Communications, 48: pp. 11656–11658, (2012).
[43]      Shen, L., Liang, S., Wu, W., Liang, R., Wu, L., "Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi)", Dalton Transactions, 42: pp. 13649–13657, (2013).
[44]      Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Férey, G., "A New Photoactive Crystalline Highly Porous Titanium (IV) Dicarboxylate", Journal of the American Chemical Society, 131: pp. 10857–10859, (2009).
[45]      Yan, B., Zhang, L., Tang, Z., Al-Mamun, M., Zhao, H., Su, X., "Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution", Applied Catalysis B: Environmental, 218: pp. 743–750, (2017).
[46]      Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., Li, Z., "An Amine-Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction", Angewandte Chemie International Edition, 51: pp. 3364–3367, (2012).
[47]      Shi, L., Wang, T., Zhang, H., Chang, K., Meng, X., Liu, H., Ye, J., "An Amine-Functionalized Iron (III) Metal–Organic Framework as Efficient Visible-Light Photocatalyst for Cr (VI) Reduction", Advanced Science, 2: pp. 1500006, (2015).
[48]      Laurier, K. G. M., Vermoortele, F., Ameloot, R., De Vos, D. E., Hofkens, J., Roeffaers, M. B. J., "Iron (III)-Based Metal–Organic Frameworks as Visible Light Photocatalysts", Journal of the American Chemical Society, 135: pp. 14488–14491, (2013).
[49]      Millward, A. R., Yaghi, O. M., "Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature", Journal of the American Chemical Society, 127: pp. 17998–17999, (2005).
[50]      Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O. M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402: pp. 276–279, (1999).
[51]      Morris, W., Leung, B., Furukawa, H., Yaghi, O. K., He, N., Hayashi, H., Houndonougbo, Y., Asta, M., Laird, B. B., Yaghi, O. M., "A Combined Experimental−Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks", Journal of the American Chemical Society, 132: pp. 11006–11008, (2010).
[52]      Deng, H., Doonan, Ch. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., Wang, B., Yaghi, O. M., "Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks", Science, 327: pp. 846–850, (2010).
[53]      Queen, W. L., Hudson, M. R., Bloch, E. D., Mason, J. A., Gonzalez, M. I., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R., Brown, C. M., "Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)", Chemical Science, 5: pp. 4569–4581, (2014).
[54]      Lin, L. -C., Kim, J., Kong, X., Scott, E., McDonald, T. M., Long, J. R., Reimer, J. A., Smit, B., "Understanding CO2 Dynamics in Metal–Organic Frameworks with Open Metal Sites", Angewandte Chemie International Edition, 52: pp. 4410–4413, (2013).
[55]      Zhang, H., Wei, J., Dong, J., Liu, G., Shi, L., An, P., Zhao, G., Kong, J., Wang, X., Meng, X., Zhang, J., Ye, J., "Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal–Organic Framework", Angewandte Chemie International Edition, 55: pp. 14310–14314, (2016).
[56]      Crake, A., Christoforidis, K. C., Kafizas, A., Zafeiratos, S., Petit, C., "CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation", Applied Catalysis B: Environmental, 210: pp. 131–140, (2017).
[57]      Ullah, S., Shariff, A. M., Bustam, M. A., Elkhalifah, A. E. I., Murshid, G., Riaz, N., Shimekit, B., "Effect of Modified MIL-53 with Multi-Wall Carbon Nanotubes and Nanofibers on CO2 Adsorption", Applied Mechanics and Materials, 625: pp. 870–873, (2014).