بررسی مدل‌سازی سینتیک پخت نانوکامپوزیت‌های اپوکسی در مجاورت نانو گرافن اکساید: مطالعۀ مروری

نوع مقاله : مقاله مروری

نویسندگان

1 دکتری مهندسی پلیمر، دانشکدۀ مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران

2 دانشیار، دانشکدۀ مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران

چکیده

فرایند پخت رزین‌های اپوکسی با سخت‌کننده‌ها، منجر به افزایش چگالی شبکه‌ای می‌شود و خواص رزین سخت‌شده، بسته به شرایط پخت، تحت تأثیر قرار می‌گیرد. برای بهبود خواص نهایی رزین‌های اپوکسی، استفاده از نانو ذرات آلی و معدنی پیشنهاد شده است. یکی از نانوذراتی که اخیراً طرفدار یافته، گرافن اکساید و مشتقات آن است. در این مقاله، مدل‌های متنوع ارائه‌شده در سینتیک پخت ترکیبات هیبریدی اپوکسی/ نانو ذرات گرافن اکساید، ارزیابی و دلایل انحراف نتایج آزمایشگاهی و تجربی با نتایج مدل‌سازی تشریح شده است. هم‌چنین مقایسۀ هر یک از این مدل‌ها با نتایج تجربی نشان داده است که مدل سیستاک برگرن و کمال نسبت به سایر مدل‌ها دارای انطباق بالاتری با نتایج تجربی است و می‌تواند به‌عنوان مبنای قابل اتکایی برای توصیف فرایند پخت رزین‌های اپوکسی حاوی نانو ذرات گرافن اکساید در نظر گرفته شود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Curing Kinetics Modeling of Epoxy Nanocomposites in the Presence of Nano Graphene Oxide: A Review Study

نویسندگان [English]

  • Mohammad Hossein Karami 1
  • Mohammad Reza Kalaee 2
1 Ph. D. in Polymer Engineering, Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
2 Associate Professor of Department of Polymer and Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
چکیده [English]

The process of curing the epoxy resins with hardeners leads to an increase in crosslink density and the properties of the hardened resin are affected, depending on the curing conditions. To improve the final properties of epoxy resins, the use of organic and inorganic nanoparticles has been suggested. One of the recently attended nanoparticles is graphene oxide and its derivatives. In this paper, various models presented in the curing kinetics of epoxy/ graphene oxide hybrid compounds have been evaluated and the reasons for the deviation of laboratory and experimental results with modeling results have been explained. Also, comparison of each of these models with experimental results has shown that Sestak-Berggren and Kamal model has higher adaptation to experimental results than the other models and can be used as a reliable basis for describing the curing process of epoxy resins containing graphene oxide nanoparticles.
 

کلیدواژه‌ها [English]

  • NanoGraphene Oxide
  • Epoxy Resin
  • Curing Kinetics
  • Sestak-Berggren Model
  • Kamal Model
[1]        Vinodhini, S. P., Xavier, J. R., "Evaluation of corrosion protection performance and mechanical properties of epoxy-triazole/graphene oxide nanocomposite coatings on mild steel", Journal of Materials Science, 56: pp. 7094-110, (2021).
[2]        Li, M., Hu, Q., Shan, H., Yu, W., Xu, Z. X., "Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium", Chemosphere, , 263: p. 128250, (2021).
[3]        Olabi, A. G., Abdelkareem, M. A., Wilberforce, T., Sayed, E. T., "Application of graphene in energy storage device A review", Renewable and Sustainable Energy Reviews, 135: pp. 110026, (2021).
[4]        Hu, B., Cong, Y. H., Zhang, B.Y., Zhang, L., Shen, Y., Huang H. Z., "Enhancement of thermal and mechanical performances of epoxy nanocomposite materials based on graphene oxide grafted by liquid crystalline monomer with Schiff base", Journal of Materials Science, 55: pp. 3712-3727, (2019).
[5]        García-Martínez, V. R., Gude, M., Calvo, S., Martínez-Miranda, M. R., Ureña, A., "Influence of graphene nanoplatelets on curing kinetics and rheological properties of a benzoxazine resin", Materials Today Communications, 24: pp. 100990, (2020).
[6]        Xie, Y., Liu, C., Liu, W., Liang, L., Wang, S., Zhang, F., Shi, H., Yang M. "A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593: pp. 124627, (2020).
[7]        Jin, F. L., Li, X., Park, S. J., "Synthesis and application of epoxy resins: A review", Journal of Industrial and Engineering Chemistry, 29: pp. 1-11, (2015).
[8]        Xue, A., Zhang, B., Sun, M., Zhang, X., Li, J., Wang, L., Song, C., Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide", International Journal of Adhesion and Adhesives, 88: pp. 11-18, (2019).
[9]        Liu, Q., Zhou, X., Fan, X., Zhu, C., Yao, X., Liu, Z "Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide", Polymer-Plastics Technology and Engineering, 51: pp. 251–256, (2012).
[10]      Reso, D., Cascaval, C. N., Mustata, F., Ciobanu, C., "Cure Kinetics, Epoxy Resins Studied by Nonisothermal DSC Data", Thermochimica. Acta, 383: pp. 119-127, ( 2002).
[11]      Montserrat, S., Málek, J., "A kinetic analysis of the curing reaction of an epoxy resin", Thermochimica Acta, 228: pp. 47-60, (1993).
[12]      Málek, J., "A computer program for kinetic analysis of non-isothermal thermoanalytical data", Thermochimica Acta, 138: pp. 337-346, (1989).
[13]      Málek, J., "The kinetic analysis of non-isothermal data", Thermochimica Acta, 200: pp. 257-269, (1992).
[14]      Rena, D. R., Xiong, X., Maa, X. Liu. S., Wang, J., Chen, P., Zeng, Y., "Isothermal curing kinetics and mechanism of DGEBA epoxy resin withphthalide-containing aromatic diamine", Thermochimica Acta, 623: pp. 15-21, (2016).
[15]      Li, L., Liao, X., Sheng, X., Liu, P., Hao, Z., He, L., Qin, G., "Influence of surface modified graphene oxide on the mechanical performance and curing kinetics of epoxy resin", Polymers for Advanced Technology, 31: pp. 1865-1874, (2020).
[16]      Wazalwar, A., M, Raichur., "Model-free cure kinetics of tetra-functional epoxy reinforced with GO and p-Phenylenediamine modified GO", Thermochimca Acta, 697: pp. 178857, (2021).
[17]      Nonahal, M., Rastin, H., Saeb, M. R., Sari, M. G., Moghadam, M. H., Zarrintaj, P, . Ramezanzadeh, B., "Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study", Progress in Organic Coatings. 114: pp.233-243, (2018).
[18]      Wang, X., Jin, J., Song, M., Lin, Y., "Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins", Material Research Express, 3: pp.105303, (2016).
[19]      Nonahal, M., Saeb M. R., Jafari, S. H., Rastin, H., Khonakdar, H. A., Najafi, F., Simon, F., "Design, preparation, and characterization of fast cure epoxy/amine-functionalized graphene oxide nanocomposites", Polymer Composite, 39:pp. 2016-2027, (2018).
[20]      Ryu, S. H., Sin, J. H., Shanmugharaj, A. M., "Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites", European Polymer Journal, 52: pp. 88–97, (2014).
[21]      Jouyandeh, M., Yarahmadi, E, Didehban, K., Ghiyasi, S., Paran, M. R., Puglia, D., Ali, J. A., Jannesari, A., Saeb, M. R., Ranjbar, Z., Ganjali, M. R., "Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets", Progress in Organic Coatings, 136: pp. 105217, (2019).
[22]      Li, L., Zeng, Z., Zou, H., Liang, M., "Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface", Thermochimica Acta, 614: pp. 76-84, (2015).
[23]      Tian, J., Yang, C., Yang, J., Shi, S., Hao, S., "The correlated effects of polyetheramine-functionalized graphene oxide loading on the curing reaction and the mechanical properties of epoxy composites", High Performance Polymer, 7: pp. 5472–5482, (2021).
[24]      Li, L., Zeng, Z., Zou, H., Mei, Liang, M., "Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface", Thermochimica Acta, 614: pp. 76-84, (2015).
[25]      Saeb, M. R., Rastin, H., Shabanian, M., Ghaffari, M., Bahlakeh, G. H., "Cure kinetics of epoxy/
β-cyclodextrin-functionalized Fe3O4 nanocomposites: Experimental analysis, mathematical modeling, and molecular dynamics simulation", Progress in Organic Coatings, 110: pp. 172-181, (2017).
[26]      Aradhana, R., Mohanty, S., Nayak, S. K., "Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives", Polymer, 141: pp. 109-123, (2018).
[27]      Karami, M. H., Kalaee, M. R., "Modeling of Curing Kinetics of Epoxy Nanocomposites by Time Sweep Method", Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Institute, 3March, ( 2019).
[28]      Karami, M. H., Kalaee, M. R., "Chemorheology of Epoxy Nanocomposites in The Presence of Elastomeric Nanoparticles", Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Institute, 3March, (2019).
[29]      Karami, M. H., Kalaee, M. R., "Study of thermal degradation kinetics of epoxy composite / carbon nanotubes", Polymerization, In Persian, (2021), DOI:10.22063/basparesh.2021.3017.1591
[30]      Karami, M. H., Kalaee, M. R., Khajavi, R., Moradi, O., Zaarei, D., "Effect of vulcanized elastomeric nanoparticles on thermal stability and the maximum decomposition temperatures of epoxy resin", Proceeding of the 17th National Chemical Engineering Congress & Exhibition IChEC, FerdowsiUniversity of Mashhad, 9-11 November, (2021).
[31]      Karami, M. H., Kalaee, M. R., Khajavi, R., Moradi, O., Zaarei, D., "Viscosity modeling of epoxy nanocomposites / elastomeric nanoparticles", Proceeding of the 17th National Chemical Engineering Congress & Exhibition, IChEC, FerdowsiUniversity of Mashhad, 9-11November, (2021).
[32]      Chen, M. H., Ke, C. Y, Chiang, C. L, "Preparation and Performance of Ecofriendly Epoxy/Multilayer Graphene Oxide Composites with Flame-Retardant Functional Groups", Journal of Composites Science, 2(2): pp. 18, (2018).
[33]      Karami, M. H., Kalaee, M. R., Mazinani, S., Martínez, V. G., Wellen, R. M. R., Hodaifa, G., Shanmugharaj, A. M., Kim, K., "Isoconversional Model Approach and Cure Kinetics of Epoxy/ NBR Nanocomposites", Proceeding of the 14th International Seminar on Polymer Science and Technology, ISPST 2020, Tarbiat Modares University, 9-12 November, pp. 9-10, (2020).
[34]      Karami M. H., Kalaee M. R., Curing of Epoxy/UFNBRP Nano Composites Using Calorimetric Method, Proceeding of the 11th International Chemical Engineering Congress & Exhibition, IChEC 2020, Tehran University, 15-17 April, (2020).
[35]      Karami, M. H., Kalaee, M. R., Khajavi, R., Moradi, O., Zaarei, D., "Thermal stability and thermal degradation of epoxy nanocomposite in the presence of full vulcanized elastomeric nano particles", Advanced materials& Novel Coatings, 10:
pp. 2758-2770, In Persian, (2021).
[36]      Hosseini, S. M., Abdouss, M., Mazinani, S., Soltanabadi, A., Kalaee, M. R., "Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing", Composites Part B: Engineering, 231: p. 109557, (2022),
[37]      Karami, M. H., Kalaee, M. R., Khajavi, R., Moradi, O., Zaarei, D., "A review study of the effect of carbon nanofibers on the curing kinetics of epoxy resins", Journal of Textile Science and Technology, In Persian, (2022).
[38]      Karami, M. H., Kalaee, M. R., "A Review of the Applications of Cross-linked Elastomeric Nanoparticles", Iran Rubber Magazine, 25: pp. 37-56, In Persian, (2020).
[39]      Karami, M. H., Kalaee, M. R., "A review of the curing kinetics of epoxy nanocomposites/nano clay", Iran Polymer Technology, Research and Development, 6: pp. 29-38, In Persian, (2021).
[40]      Karami, M. H., Kalaee, M. R., "Review of degradation kinetics of epoxy nanocomposites in the presence of clay nanoparticles", Polymerization, In Persian, (2021), DOI: 10.22063/BASPARESH.2021.2895.1552.
[41]      Karami, M. H., Kalaee, M. R. "Review of curing kinetics of epoxy nanocomposites in the presence of iron oxide nanoparticles", Polymerization, 11(3):
pp. 34-43, In Persian, (2021).
[42]      Karami, M. H., Kalaee, M. R., "Investigation of the effect of carbon nanotubes on modeling of curing kinetics of epoxy resin", Journal of science and engineering elites, 6: pp. 162-175, In Persian, (2021).
[43]      Xie, F., Qi, S. H., Wu, D., "A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites", Express Polymer Letters, 10: pp. 470-478 , (2016).
[44]      Rafiee, M., Nitzsche, F., Laliberte, J., Hind, S., Robitaille, F., Labrosse, M. R, "Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide", Composites Part B: Engineering, 164: pp. 1-9 , (2019).
[45]      Galukhin, A., Nosov, R., Taimova, G., Nikolaev, I., Islamov, D., Vyazovkin, S., "Polymerization kinetics of adamantane-based dicyanate ester and thermal properties of resulting polymer", Reactive and Functional Polymers, 165: p. 104956, (2021).
[46]      Chhetri, S., Adak, N. C., Samanta, P., Murmu, N. C., Kuila, T., "Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability", Polymer Testing, 63: pp. 1-11, (2017).