سنتز و مشخصه‌یابی نانوذرات بازدارندۀ خوردگی در صنایع نفت و گاز

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

2 دانشجوی دکتری مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

3 استادیار مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

چکیده

خوردگی یکی از بزرگ‌ترین مشکلات صنایع ازجمله صنعت نفت و گاز به شمار می‌آید؛ به‌طوری‌که مقابله با آن همواره یکی از دغدغه‌های مهم فرایندی و اقتصادی بوده است. با توجه به لزوم عملکرد بدون وقفۀ فرایند‌های صنعت نفت و گاز و هزینه‌های بالای تعمیرات، استفاده از بازدارنده‌های خوردگی از بهترین روش‌های مقابله با خوردگی‌های صنعتی است. نانوذرات با داشتن سطح ویژۀ بالاتر، ضریب جذب بسیار بالاتری نسبت به ذرات معمول بر روی سطح فلز دارند. به همین دلیل استفاده از آن‌ها به‌عنوان بازدارنده در سالیان اخیر توجه بسیاری یافته است. از این رو این پژوهش استفاده از انواع مختلف نانوذرات بازدارندۀ خوردگی را بررسی کرده است. با توجه به تمرکز پژوهش حاضر بر خوردگی‌های متداول در صنایع نفت و گاز، در ابتدا انواع خوردگی‌های رایج در این صنعت با توجه به جنس فلز یا آلیاژ مورد استفاده در هر واحد معرفی شده است. پس از آن، نانوبازدارنده‌های مختلف و قابلیت استفاده از آن‌ها در محیط‌ها و شرایط عملیاتی گوناگون بررسی شده است. در پایان نیز در خصوص روش‌های مختلف سنتز و مشخصه‌یابی عملکرد نانوبازدارنده‌ها، بحث و بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and Characterization of Corrosion Inhibitor Nanoparticles in Oil and Gas Industry

نویسندگان [English]

  • H. Talebi 1
  • S. Maghsoudy 2
  • S. Habibzadeh 3
1 M. Sc. Student of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2 Ph. D. Student of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
3 Assistant Professor of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
چکیده [English]

Corrosion is one of the prevalent problems in industries such as oil and gas industry. This renders the corrosion prevention associated with
the economic concerns. Due to the need for continuous operation of oil and gas industry processes and high maintenance costs, using corrosion inhibitors is one of the best approaches to deal with industrial corrosion. Nanoparticles with a higher specific surface area have a much higher adsorption coefficient than ordinary particles on the metal surface. For this reason, their use as an inhibitor has received much attention in recent years. Therefore, in this study, using different types of corrosion inhibitor nanoparticles has been reviewed. According to the aims of
the present study on corrosions in the oil and gas industry, at first, different types of common corrosions in this industry have been introduced according to the metal or alloy used in each unit. Then, different nanoinhibitors and their applicability in different environments and operating conditions have been investigated. At the end of this study, various methods of synthesis and characterization of the performance of nanoinhibitors are discussed.

 

کلیدواژه‌ها [English]

  • Corrosion Protection
  • Nanoparticle
  • Nanoinhibitor
  • Acidic Medium
  • Oil and Gas Industry
[1]        Popov, B. N., "Evaluation of Corrosion", Corrosion Engineering, Elsevier, pp. 1–28, (2015).
[2]        Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. Paul., Payer, J. H., "Corrosion Cost and Preventive Strategies in the United States”, No. FHWA-RD-01-156, R315-01, (2002).
[3]        Thomas, J. G. N., "The Mechanism of Corrosion Prevention by Inhibitors", Corrosion,
pp. 18:34-18:56, (1976).
[4]        Ahmad, Z., "Types of Corrosion: Materials and Environments", Principles of Corrosion Engineering and Corrosion Control. pp. 120–270, (2006).
[5]        Ansari, K. R., Chauhan, D. S., Singh, A., Saji, V. S., Quraishi, M. A., "Corrosion Inhibitors for Acidizing Process in Oil and Gas Sectors", Corrosion Inhibitors in the Oil and Gas Industry. pp. 151–176, (2020).
[6]        Saad, M. A., Kamil, M., Abdurahman, N. H., Yunus, R. M., Awad, O. I., "An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions", Processes, Vol. 7, No. 7, p. 470, (2019).
[7]        Vafajoo, L., Ganjian, K., Fattahi, M., "Influence of key parameters on crude oil desalting: An experimental and theoretical study", J. Pet. Sci. Eng., Vol. 90–91, pp. 107–111, (2012).
[8]        Liu, he, Wang, F., Wang, Y., Gao, Y., Cheng, J., "Oil well perforation technology: Status and prospects", Pet. Explor. Dev., Vol. 41, (2014).
[9]        Speight, J. G., "2-Introduction to refining processes", Gulf Professional Publishing, pp. 43–84, (2020)
[10]      Féron, D., "2-Overview of nuclear materials and nuclear corrosion science and engineering", Woodhead Publishing Series in Energy, pp. 31–56, (2012).
[11]      Robert A. Meyers, P. D., "UOP MEROX PROCESS", New York: McGraw-Hill Education, 4th ed., (2016).
[12]      John, R. C., Fort, W. C., "Petroleum Industry: Corrosion", Oxford: Elsevier, pp. 6840–6842, (2001).
[13]      Brady, M. P., Keiser, J. R., Leonard, D. N., Zacher, A. H., Bryden, K. J., Weatherbee, G. D., "Corrosion of stainless steels in the riser during co-processing of bio-oils in a fluid catalytic cracking pilot plant", Fuel Process. Technol., Vol. 159, pp. 187–199, (2017).
[14]      Speight, J. G., "Chapter 3-Catalytic Cracking", Gulf Professional Publishing, pp. 39–67, (2013).
[15]      Rossi, F., Rovaglio, M., Manenti, F., "Chapter 18-Model predictive control and dynamic real-time optimization of steam cracking units", Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Vol. 45, pp. 873–897, (2019).
[16]      Karimzadeh, R., Godini, H. R., Ghashghaee, M., "Flowsheeting of steam cracking furnaces", Chem. Eng. Res. Des., Vol. 87, No. 1, pp. 36–46, (2009).
[17]      Schulz, C. J., "Corrosion Rates of Carbon Steel in HF Alkylation Service", (2006).
[18]      Askari, M., Aliofkhazraei, M., Jafari, R., Hamghalam, P., Hajizadeh, A., "Downhole corrosion inhibitors for oil and gas production – a review", Appl. Surf. Sci. Adv., Vol. 6, p. 100128, (2021).
[19]      Kausalya, T., Hazlina, H., "VGVG applied sciences Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues", Vol. 10, Issue: 10, No. 3389, (2020).
[20]      Zagórski, A., Matysiak, H., Słobodian, Z., Zvirko, O., Nykyforchyn, H., Kurzydłowski, K., "Corrosion Degradation of Oil Storage Tank", Fiz-Khim. Mekh. Mater., pp. 437–439, (2004).
[21]      Pereira, J., Velasquez, I., Blanco, R., Sanchez, M., Pernalete, C., & Canelón, C., "Crude Oil Desalting Process", Advances in Petrochemicals, pp. 1-11 (2015).
[22]      Subramanian, C., "Corrosion prevention of crude and vacuum distillation column overheads in a petroleum refinery: A field monitoring study", Process Saf. Prog., Vol. 40, Issue:2, No. e12213, (2021).
[23]      Andreeva, G. A., Burlov, V. V., Prasolva, O. N., "Corrosion protection of equipment and lines in catalytic reforming units", Chem. Technol. Fuels Oils, Vol. 21, No. 4, pp. 172–174, (1985).
[24]      Bernardo, R., Shanmugam, J., Hazos, Z. F., "General and Localized Corrosion in a Tail Gas Treating Quencher Column", Paper Number: NACE-2015-5898, (2015).
[25]      Turnbull, A., Zhou, S., "Overview Steam turbines Part 2 - Stress corrosion cracking of turbine disc steels", Corros. Eng. Sci. Technol., Vol. 38, No. 3, pp. 177–191, (2003).
[26]      Basu, B., Satapathy, S., Bhatnagar, A. K., "Merox and Related Metal Phthalocyanine Catalyzed Oxidation Processes", Catal. Rev., Vol. 35, No. 4, pp. 571–609, (1993).
[27]      Alipour, Y., Henderson, P., "Corrosion of furnace wall materials in waste-wood fired power plant", Corros. Eng. Sci. Technol., Vol. 50, No. 5, pp. 355–363, (2015).
[28]      Zhang, X., You, W. M., Zhou, Y. J., Li, Y. S., Qiu, S. J., "Analysis on the Corrosion Failure of MDS Mine Multistage Centrifugal Pump Impeller", Adv. Mater. Res., Vol. 650, pp. 344–349, (2013).
[29]      Ismail, A., Razali, A. A., Nordin, N., Noor, F. M., Anif, A. H., Ayop, S. S., "Identifying naphthenic acid corrosion mechanism on heat exchanger unit by computational fluid dynamic simulation", Mater. Today Proc., Vol. 29, pp. 82–87, (2020).
[30]      Paschke, B., Kather, A., "Corrosion of Pipeline and Compressor Materials Due to Impurities in Separated CO2 from Fossil-Fuelled Power Plants", Energy Procedia, Vol. 23, pp. 207–215, (2012).
[31]      Popov, B. N., "Corrosion Inhibitors", Corrosion Engineering, pp. 581–597, (2015).
[32]      Guo, L., Obot, I. B., Zheng, X., Shen, X., Qiang, Y., Kaya, S., Kaya, C., "Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms", Appl. Surf. Sci., Vol. 406, pp. 301–306, (2017).
[33]      Chen, Y., Yang, W., "Formulation of Corrosion Inhibitors", Water Chemistry, (2020).
[34]      Jafari, H., Akbarzade, K., Danaee, I., "Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives", Arab. J. Chem., Vol. 12, No. 7, pp. 1387–1394, (2019).
[35]      Sarkar, T. K., Saraswat, V., Mitra, R. K., Obot, I. B., Yadav, M., "Mitigation of corrosion in petroleum oil well/tubing steel using pyrimidines as efficient corrosion inhibitor: Experimental and theoretical investigation", Mater. Today Commun., Vol. 26, p. 101862, (2021).
[36]      Van Soestbergen, M., Baukh, V., Erich, S. J. F., Huinink, H. P., Adan, O. C. G., "Release of cerium dibutylphosphate corrosion inhibitors from highly filled epoxy coating systems", Prog. Org. Coatings, Vol. 77, No. 10, pp. 1562–1568, (2014).
[37]      Dry, C., "Procedures developed for self-repair of polymer matrix composite materials", Compos. Struct., Vol. 35, No. 3, pp. 263–269, (1996).
[38]      Nguyen-Tri, P., Do, T. O., Nguyen, T. A., Le, V. T., Assadi, A. A., "Nanocontainer: An introduction", Elsevier Inc., (2019).
[39]      Farag, A. A., "Applications of nanomaterials in corrosion protection coatings and inhibitors", Corros. Rev., pp. 1–20, (2020).
[40]      Cho, S. H., White, S. R., Braun, P. V., "Self-healing polymer coatings", Adv. Mater., Vol. 21, No. 6, pp. 645–649, (2009).
[41]      Montemor, M. F., Ferreira, M. G. S., "Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates", Prog. Org. Coatings, Vol. 63, No. 3, pp. 330–337, (2008).
[42]      Montemor, M. F., Snihirova, D. V., Taryba, M. G., Lamaka, S. V., Kartsonakis, I. A., Balaskas, A. C., Kordas, G. C., Tedim, J., Kuznetsova, A., Zheludkevich, M. L., Ferreira, M. G. S., "Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors", Electrochim. Acta, Vol. 60, pp. 31–40, (2012).
[43]      Zahidah, K. A., Kakooei, S., Ismail, M. C., Raja, P. B., "Halloysite nanotubes as nanocontainer for smart coating application: A review", Prog. Org. Coatings, Vol. 111, pp. 175–185, (2017).
[44]      Yang, F., Li, X., Dai, Z., Liu, T., Zheng, W., Zhao, H., Wang, L., "Corrosion inhibition of polydopamine nanoparticles on mild steel in hydrochloric acid solution", Int. J. Electrochem. Sci., Vol. 12, No. 8, pp. 7469–7480, (2017).
[45]      Bhuvaneshwari, B., Vivekananthan, S., Sathiyan, G., Palani, G. S., Iyer, N. R., Rai, P. K., Mondal, K., Gupta, R. K., "Doping engineering of V-TiO2 for its use as corrosion inhibitor", J. Alloys Compd., Vol. 816, No. 152545, (2020).
[46]      Umoren, S. A., Madhankumar, A., "Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium", J. Mol. Liq., Vol. 224, pp. 72–82, (2016).
[47]      Solomon, M. M., Gerengi, H., Umoren, S. A., "Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H2SO4 Medium", ACS Appl. Mater. Interfaces, Vol. 9, No. 7, pp. 6376–6389, (2017).
[48]      Zafari, S., Niknam Shahrak, M., Ghahramaninezhad, M., "New MOF-Based Corrosion Inhibitor for Carbon Steel in Acidic Media", Met. Mater. Int.,
Vol. 26, No. 1, pp. 25–38, (2020).
[49]      Al-Rubaiey, N. A., Albrazanjy, M. G., Kadhim, W. A., Mohammed, H. D., Rahim, M. H. A., "The potential of using Zn0.6Ni0.4Fe2O4 nanoparticles as corrosion inhibitor for carbon steel in oil environment", Mater. Sci. Forum, Vol. 1021, pp. 335–343, (2021).
[50]      Fandi, Z., Ameur, N., Brahimi, F. T., Bedrane, S., Bachir, R., "Photocatalytic and corrosion inhibitor performances of CeO2nanoparticles decorated by noble metals: Au, Ag, Pt", J. Environ. Chem. Eng., Vol. 8, No. 5, pp. 2–11, (2020).
[51]      Sharmila, R., Selvakumar, N., Jeyasubramanian, K., "Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles", Mater. Lett., Vol. 91, pp. 78–80, (2013).
[52]      Mandour, H. S., Nazeer, A. A., Al-Hetlani, E., Madkour, M., Abdel-Monem, Y. K., "Organic nanoparticles of acetohydrazides as novel inhibitors for mild steel corrosion", New J. Chem., Vol. 42, No. 8, pp. 5914–5922, (2018).
[53]      Sowmyashree, A. S., Somya, A., Kumar, C. B. P., Rao, S., "Novel nano corrosion inhibitor, integrated zinc titanate nano particles: Synthesis, characterization, thermodynamic and electrochemical studies", Surfaces and Interfaces, Vol. 22, p. 100812, (2021).
[54]      Chaudhry, A. U., Mittal, V., Mishra, B., "Nano nickel ferrite (NiFe2O4) as anti-corrosion pigment for API 5L X-80 steel: An electrochemical study in acidic and saline media", Dye. Pigment., Vol. 118, pp. 18–26, (2015).
[55]      Asaad, M. A., Sarbini, N. N., Sulaiman, A., Ismail, M., Huseien, G. F., Majid, Z. A., Raja, P. B., "Improved corrosion resistance of mild steel against acid activation: Impact of novel Elaeis guineensis and silver nanoparticles", J. Ind. Eng. Chem., Vol. 63, pp. 139–148, (2018).
[56]      Pragathiswaran, C., Ramadevi, P., Kumar, K. K. "Imidazole and Al3+nano material as corrosion inhibitor for mild steel in hydrochloric
acid solutions", Mater. Today Proc., Vol. 37, pp. 2912–2916, (2020).
[57]      Ahmed, S., Ahmad, I., Ahmad, Z., Jalil, A., Ashiq, M. N., Shafique, A., "Fabrication and corrosion inhibition behavior of hierarchical Al-Cr co-doped magnesium ferrites nanomaterial for steel", Surf. Coatings Technol., Vol. 405, p. 126687, (2021).
[58]      Majidi, H. J., Mirzaee, A., Jafari, S. M., Amiri, M., Shahrousvand, M., Babaei, A., "Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel", Int. J. Biol. Macromol., Vol. 148, pp. 1190–1200, (2020).
[59]      Jain, P., Patidar, B., Bhawsar, J., "Potential of Nanoparticles as a Corrosion Inhibitor: A Review", J. Bio- Tribo-Corrosion, Vol. 6, No. 2, pp. 1–12, (2020).
[60]      Caruso, F., Caruso, R. A., Möhwald, H., "Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating", Science (80-.)., Vol. 282, No. 5391, pp. 1111–1114, (1998).
[61]      Lvov, Y., Decher, G., Moehwald, H., "Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly (vinyl sulfate) and poly(allylamine) ", Langmuir, Vol. 9, No. 2, pp. 481–486, (1993).
[62]      Zhang, X., Xu, Y., Zhang, X., Wu, H., Shen, J., Chen, R., Xiong, Y., Li, J., Guo, S., "Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications", Prog. Polym. Sci., Vol. 89, pp. 76–107, (2019).
[63]      Cui, W., Li, J., Decher, G., "Self-Assembled Smart Nanocarriers for Targeted Drug Delivery", Adv. Mater., Vol. 28, No. 6, pp. 1302–1311, (2016).
[64]      Crociani, L., Ruggiero, L., "Methods for synthesis of nanocontainers", Smart Nanocontainers, pp. 19–48, (2020).
[65]      Schwarz, J. C., Weixelbaum, A., Pagitsch, E., Löw, M., Resch, G. P., Valenta, C., "Nanocarriers for dermal drug delivery: Influence of preparation method, carrier type and rheological properties", Int. J. Pharm., Vol. 437, No. 1, pp. 83–88, (2012).
[66]      Sun, W., Fan, J., Wang, S., Kang, Y., Du, J., Peng, X., "Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors", ACS Appl. Mater. Interfaces, Vol. 10, No. 9, pp. 7832–7840, (2018).
[67]      Carvalho, M. R., Reis, R. L., Oliveira, J. M., "Dendrimer nanoparticles for colorectal cancer applications", J. Mater. Chem. B, Vol. 8, No. 6,
pp. 1128–1138, (2020).
[68]      Cui, J., XQ, L., ZQ, P., YS, P., "A long-term stable and environmental friendly self-healing coating with polyaniline/sodium alginate microcapsule structure for corrosion protection of water-delivery pipelines", Chem. Eng. J., Vol. 358, pp. 379–388, (2019).
[69]      JWang, J. P., Wang, J.K., Zhou, Q., Li, Z., Han, Y., Song, Y., Yang, S., Song, X., Qi, T., Möhwald, H., Shchukin, D., "Adaptive Polymeric Coatings with Self-Reporting and Self-Healing Dual Functions from Porous Core–Shell Nanostructures", Macromol. Mater. Eng., Vol. 303, No. 4, p. 1700616, (2018).
[70]      Karekar, S. E., Bagale, U. D., Sonawane, S. H., Bhanvase, B. A., Pinjari, D. V. A., "A smart coating established with encapsulation of Zinc Molybdate centred nanocontainer for active corrosion protection of mild steel: release kinetics of corrosion inhibitor", Compos. Interfaces, Vol. 25, No. 9, pp. 785–808, (2018).
[71]      Zea, C., Alcántara, J., Barranco-García, R., Morcillo, M., de la Fuente, D., "Synthesis and Characterization of Hollow Mesoporous Silica Nanoparticles for Smart Corrosion Protection.” Nanomater. (Basel, Switzerland), Vol. 8, No. 7, pp. 478, (2018).
[72]      Falcón, J. M., Otubo, L. M., Aoki, I. V., "Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings", Surf. Coatings Technol., Vol. 303, pp. 319–329, (2016).
[73]      Thanawala, K., Khanna, A. S., Raman, R. K. S., Bohm, S., "Smart anti-corrosive self-healing coatings using halloysite nanotubes as host for entrapment of corrosion inhibitors", Corros. Prev., (2015).
[74]      Sastri, V. S., "Corrosion inhibitors: principles and applications", Wiley New York, (1998).
[75]      Do, D., "Duond, Adsorption Analysis: Equilibria and Kinetics.” Imperial College Press, London, (1998).
[76]      Stansbury, E. E., Buchanan, R. A., "Fundamentals of electrochemical corrosion", ASM international, (2000).
[77]      El-Azazy, M., Min, M., Annus, P., "Electrochemical Impedance Spectroscopy", IntechOpen, (2020). https://doi.org/10.5772/intechopen.87884.
[78]      Zhang, D., Zhang, H. Q., Zhao, S., Li, Z. G., Hou, S. X., "Electrochemical impedance spectroscopy evaluation of corrosion protection of X65 carbon steel by halloysite nanotube-filled epoxy composite coatings in 3.5% NaCl solution.” Int. J. Electrochem. Sci., Vol. 14, No. 5, pp. 4659-4667, (2019).
[79]      Al-Dahiri, R. H., Turkustani, A. M., Salam, M. A., "The application of zinc oxide nanoparticles as an eco-friendly inhibitor for steel in acidic solution", Int. J. Electrochem. Sci., Vol. 15, No. 1, pp. 442-457, (2020).