روش‌های ساخت ذرات پلیمری متخلخل: آخرین دستاوردها

نوع مقاله : مقاله مروری

نویسنده

استادیار مهندسی پلیمر، دانشگاه یزد

چکیده

ذرات پلیمری متخلخل حاوی حفره‌های داخلی و خارجی و از مساحت ویژۀ بسیار زیاد، چگالی نسبتاً کم، نفوذپذیری و قابلیت جذب عالی برخوردار هستند. ساختار حفره‌ها (تخلخل، اندازۀ حفره، مساحت ویژه) از عوامل اصلی حاکم بر کاربرد این‌گونه مواد در زمینه‌های مختلف کاتالیست، جداسازی،استخراج فاز جامد، تبادل یونی، حسگرها، ذخیره و رهایش داروست. کاربردهای گستردۀ ذرات متخلخل محققان را وادار به توسعۀ روش‌های متداول مانند پلیمریزاسیون تعلیقی، پراکنشی، رسوبی، تورم دانه‌ای و روش­های جدید امولسیون غشایی / میکروکانال، میکروسیال می‌کند. در تمامی این روش‌ها از عوامل تخلخل مختلف در مرحلۀ اول و به‌دنبال آن حذف عامل تخلخل‌ساز برای تولید حفره‌ها استفاده می­شود. در این مطالعه همۀ روش‌های گوناگون پلیمریزاسیون برای تهیۀ ذرات پلیمری متخلخل (مزو،میکرو، ماکرو) با ساختار کروی، غیر کروی و عامل‌دار مرور شده و برتری‌ها و کاستی‌های هر روش از نظر خواص ذره ذکر شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Techniques for Preparation of Porous Polymer Particles: Recent Achievements

نویسنده [English]

  • Z. Daneshfar
Assistant Professor of Polymer Engineering, Yazd University
چکیده [English]

Porous polymer particles containing internal and external pores have a very large specific area, relatively low density, permeability and excellent adsorption capacity. The structure of pores (porosity, pore size, specific area) are the main factors governing the application of such materials in various catalyst fields, separation, solid phase extraction, ion exchange, sensors storage and drug delivery. Extensive applications of porous particles are forcing researchers to develop conventional methods such as suspension polymerization, dispersion, precipitation, seed sweeling polymerization and new membrane / microchannel and microfluidic emulsification methods.
In all these methods, different porogen are used in the first stage, followed by the removal of the porogen to produce pores. In this study, all different polymerization techniques for the preparation of porous polymer particles with spherical and non-spherical structure, functionality are reviewed and the advantages and disadvantages of each method in terms of particle properties and particle size distribution are mentioned.
 

کلیدواژه‌ها [English]

  • Porous Polymer Particles
  • Seed Swelling Polymerization
  • Heterogenous Polymerization
  • Membrane / Microchannel Emulsification
  • Microfluidic Emulsification
[1]        Jayakrishnan, A., Thanoo, B. C., "Suspension polymerization of 2-hydroxyethyl methacrylate in the presence of polymeric diluents: a novel route to spherical highly porous beads for biomedical applications", J. Biomed. Mater. Res. Vol. 24, pp. 913–927, (1990).
[2]        Ferreira, A, Bigan M, Blondeau D., "Optimization of a polymeric HPLC phase: poly(glycidyl methacrylate-co-ethylene dimethacrylate) Influence of the polymerization conditions on the pore structure of macroporous beads", J. Reactive. Funcl Polym. Vol. 56, pp. 123-129, (2003).
[3]        Gonte, R. R., Balasubramanian, K., Mumbrekar, J. D., "Porous and cross-linked cellulose beads for toxic metal ion removal: Hg(II) ions", J. Polym. Vol. 2013, pp. 1–9, (2013).
[4]        Dhake, K. P., Bhatte, K. D., Wagh, Y. S., Singhal, R. S., Bhanage, B. M., "Immobilization of Steapsin Lipase on macroporous immobead-350 for biodiesel production in solvent free system", J. Biotechnology. Bioprocess Eng m. Vol. 17, pp. 959–965, (2012).
[5]        Cai, y., Chen, Y., Hong, X., "Porous microsphere and its application", Int. J. Nanomedicine. Vol. 8, pp. 1111–1120, (2013).
[6]        Gao, S. L., Wang, Y.J, Diao, X., Luo, G., Dai, Y., "Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15", J. Bioresour Technol. Vol. 11, pp. 3830–3837, (2010).
[7]        Moore, J. C., "Gel permeation chromatography. I. A new method for molecular weight distribution of high polymers", J. Polymer Science Part A: General Papers. Vol. 2, pp. 835-843, (1964).
[8]        Wang, J., Yang, Z., Xu J., Ahmad, M., Zhang, H., Zhang, A., Zhang, Q., Kou, X., Zhang, B., "Surface Microstructure Regulation of Porous Polymer Microspheres by Volume Contraction of Phase Separation Process in Traditional Suspension Polymerization System", Macromol. Rapid Commun. Vol. 40, pp. 1800768-1800777, (2019).
[9]        Mohamed, M. H., Wilson, L. D., "Porous copolymer resins: tuning pore structure and surface area with non reactive porogens", Nanomaterials Vol. 40, pp. 163–186, (2012).
[10]      Guyot, A., Bartholin, M., Progr. "Design and properties of polymers as materials for fine chemistry", Polym. Sci. Vol. 8, pp. 277– 332, (1982).
[11]      Mansour, F. R., Waheed, S., Paull, B., Maya, F., "Porogens and porogen selection in the preparation of porous polymer monoliths", j. Sep Sci. Vol. 43, pp. 56-69, (2020).
[12]      Liu, Q., Li, Y., Shen, S., Xiao, Q., Chen, L., Liao, B., Ou, B., Ding, Y., "Preparation and characterization of crosslinked polymer beads with tunable pore morphology", J. Appl. Polym. Sci. Vol. 121, pp. 654-659, (2011).
[13]      Mane, S., Ponrathnam, S., Chavan, N., "Role of interfacial tension of solvating diluents and hydrophilic hydrophobic cross-linkers in hyper-cross-linked solid support", Ind. Eng. Chem. Res. Vol. 54, pp. 6893-6901, (2015).
[14]      Ortiz-Palacios, J., Cardoso, J., Manero, O., "Production of macroporous resins for heavy-metal removal. I. Nonfunctionalized polymers", J. Appl. Polym. Sci. Vol. 107, pp. 2203-2210, (2008).
[15]      Benes, J. M, Horak, D., Svec, F., "Methacrylate-based chromatographic media", J. Sep. Sci. Vol. 28, pp. 1855-1875, (2005).
[16]      Horak, D., Labsky, J., Pilar J., Bleha, M., Pelzbauer, Z., Svec, F., "The effect of polymeric porogen on the properties of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate", Polymer. Vol. 34 pp. 3481-3489, (1993).
[17]      Kanamori, K., Hasegawa, J., Nakanishi, K., Hanada, T., "Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization", Macromolecules. Vol. 41, pp. 7186-7193, (2008).
[18]      Macintyre FS, Sherrington DC. "Control of porous morphology in suspension polymerized poly(divinylbenzene) resins using oligomeric porogens", Macromolecules. Vol. 37, pp. 7628-7636, (2004).
[19]      Okay, O., Gurun, C., "Synthesis and formation mechanism of porous 2-hydroxyethyl methacrylate–ethylene glycol dimethacrylate copolymer beads", J. Appl. Polym. Sci Vol. 46, pp. 401– 410, (1992).
[20]      Gokmen, M. T, Du Prez, F. E, "Porous polymer particles—A comprehensive guide to synthesis", Progress in Polym. Sci. Vol. 37, pp. 365-405, (2012).
[21]      Costa, L. C., Monerio, R. C., Castro, H. M. A., Ribeiro, T. S., Oliveria, M. A., Torquat, O. E. C. C., Arcanjo, M. E., Marques, M. R. C., "Glycidyl methaacrylate-ethylene glycol dimethacrylate copolymers with varied pore structures prepared with different reaction parameters", Materials Research. Vol. 23, pp. 1-9, (2020).
[22]      Dubinsky, S., Park, J. I., Gourevich, I., Chan, C., Deetz, M., Kumacheva, E., "Toward controlling the surface morphology of macroporous copolymer particles", Macromolecules. Vol. 42, pp 1990-1994, (2009).
[23]      Tan, J., Li, C., Zhou, J., Yin, C., Zhang, B., Gu, J., Zhang, Q., "Fast and Facile Fabrication of Porous Polymer Particles Via Thiol-ene Suspension Photopolymerization", RSC Adv. Vol. 4, pp. 13334-13339, (2014).
[24]      lexopoulos, A. H., Kiparissides, C., "On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I: the effect of primary particle size distribution", J. Chem Eng Sci. Vol. 62, pp. 3970-3983, (2007).
[25]      Wang, H., Qin, Z., Liu, Y., Li, X., Liu, J., Liu, Y., Huang, D., Di, D., "Design and preparation of porous polymer particles with polydopamine coating and selective enrichment for biomolecules", J. RSC Adv. Vol. 7, pp. 45311- 45319, (2017).
[26]      Zhou, W. Q., Gu, T. Y., Su, Z. G ., Ma, G. H., "Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method", J. Polymer. Vol. 48, pp. 1981-1988, (2007).
[27]      Zhang, D., Zhou, W., Li J., Mi Y., Su Z., Ma G., "The Construction of an Aqueous Two-Phase System to Solve Weak-Aggregation of Gigaporous Poly(Styrene-Divinyl Benzene) Microspheres", Polymers. Vol. 8, pp 142-154, (2016).
[28]      Ziemecka, I., Van Steijn, V., Koper, G. J. M., Rosso, M., Brizard, A. M., Van Esch, J. H., Kreutzer, M. T., "Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems", J. Lab Chip. Vol. 11, pp. 620-624, (2011).
[29]      Li, W. H., Stover, H. D. H, "Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization ", J. Polym. Sci., Polym. Chem. Ed. Vol. 36, pp. 1543-1551, (1998).
[30]   Subri, N. N. S., Cormack, P. A. G., Ain Md, S. N,. Jamil ,1 Abdullah, L. G., Daik, R., "Synthesis of poly(acrylonitrile-co-divinylbenzene-co-vinylbenzyl chloride)-derived hypercrosslinked polymer microspheres and a preliminary evaluation of their potential for the solid-phase capture of pharmaceuticals", J. Applied. Polymer. Science. Vol. 135, pp. 45677-45686, (2018).
[31]      Song, J. S., Tronc, F., Winnik, M. A., "Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particle", J. Am. Chem Soc. Vol. 126, pp. 6562-6563, (2004).
[32]      Kim, D. H., Jeong, J. H., Woo, H. C., Kim, M. H., "Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors", J.Chem. Eng l. Vol. 420, pp. 127628-127640, (2021).
[33]      Okubo, M., Ikegami, K., Yamamoto, Y., "Preparation of micron-size monodispersed polymer microspheres having chloromethyl group", Colloid Polym Sci. Vol. 267, pp. 193-200, (1989).
[34]      Unsal, E., Camli, S.T., Senel, S., Tuncel, A., "Chromatographic performance of monodisperse–macroporous particles produced by “modified seeded polymerization.” I: Effect of monomer/seed latex ratio", J. Appl. Polym. Sci. Vol. 92, pp. 607-618, (2004). 
[35]      Peng, Q., Wu, Y., Cong, H., Shen, Y., Mahmood, K., Yu, B., "Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC", Talanta. Vol. 208, pp. 120462-120478, (2020).
[36]      Hosoya, K ., Fréchet, J. M. J., "Influence of the seed polymer on the chromatographic properties of size monodispersed polymeric sseparation media prepared by a multi-step swelling and polymerization method", J. Polym Sci A Polym Chem. Vol. 31, pp. 2129–2141, (1993).
[37]      Cong, H., Xing, J., Ding, X., Zhang, S., Shen, Y., Yu, B.,  "Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation", Talanta. Vol. 210, pp. 120586, (2020).
[38]      Zohrehvand, S., "On activated seed swelling technique", J. Polym Int. Vol. 54, pp. 1191–1195, (2005).
[39]      Yu, B., Xue, T., Pang, L., Zhang, X., Shen, Y., Cong, H., "The Effect of Different Porogens on Porous PMMA Microspheres by Seed Swelling Polymerization and Its Application in High-Performance Liquid Chromatography", J. Materials. Vol. 11, pp. 705–716, (2018).
[40]      Okubo, M., Shiozaki, M., Tsujihiro, M., Tsukuda, Y., "Preparation of micron-size monodispersed polymer particles by seeded polymerization utilizing the dynamic monomer swelling method", J. Colloid Polymer Sci. Vol. 269, pp. 222–226, (1991).
[41]      Ge, X., Wang, M., Wang, H,, Yuan, Q., Ge, X., Liu, H., Tang, T., "Novel walnutlike multihollow polymer particles: synthesis and morphology control", Langmuir. Vol. 26, pp. 1635–1641, (2010).
[42]      Fujibayashi, T., Komatsu, Y., Konishi, N., Yamori, H., Okubo, M., "Effect of polymer polarity on the shape of “golf ball-like” particles prepared by seeded dispersion polymerization", J. Ind Eng Chem Res. Vol. 47, pp. 6445-6449, (2008).
[43]      Konishi, N., Fujibayashi, T., Tanaka, T., Minami, H., Okubo, M., "Effects of properties of the surface layer of seed particles on the formation of golf ball-like polymer particles by seeded dispersion polymerization", Polymer. Vol. 42, pp. 66–71, (2010).
[44]      He, XD., Ge XW., Liu HR., Wang MZ., Zhang ZC., "Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface", J. Chem Mater. Vol. 17, pp. 5891-5892, (2005).
[45]      He, X. D., Ge, X. W., Liu, H. R., Wang, M. Z., Zhang, Z. C., "Cagelike polymer microspheres with hollow core/porous shell structures", J. Polym. Chem. Vol. 45, pp. 933-941, (2007).
[46]      Nauman, N., Zaquen, N., Junkers, T., Boyer, C., Zetterlund, P. B ., "Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification", Macromolecules Vol. 52, pp. 4492-4499, (2019).
[47]      Yuyama, H., Watanabe, T., Ma, G. H., Nagai, M., Omi, S., "Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique", J. Colloids. Surf A. Vol. 168, pp. 159–174, (2000).
[48]      Malik, D. J., Webb, C., Holdich, R.G., Ramsden, J. J., Warwick, G. L., Roche, I., Williams, D. J., Trochimczuk, A. W., Dale, J. A., Hoenich, N.A., "Synthesis and characterization of size-selective nanoporous polymeric adsorbents for blood purification", J. Sep Purif Technol. Vol. 66, pp. 578–585, (2009).
[49]      Wang, R., Zhang, Y., Ma, G., Su, Z., "Preparation of uniform poly(glycidyl methacrylate) porous microspheres by membrane emulsification–polymerization technology", J. Appl Polym Sci. Vol. 102, pp. 5018–5027, (2006).
[50]      Dragosavac, M. M., Sovilj, M. N., Kosvintsev, S. R., Holdich, R. G., Vladisavljevic, G. T., "Controlled production of oil-in-water emulsions containing unrefined pumpkin seed oil using stirred cell membrane emulsification", J. Membr Sci. Vol. 322, pp. 178–188, (2008).
[51]   Wang J., Li Y., Wang X., Wang J., Tian H., Zhao P., Tian Y., Gu Y., Wang L., Wang C., "Droplet Microfluidics for the Production of Microparticles and Nanoparticles", Micromachines. Vol. 8, pp. 22-45, (2017).
[52]      Wang B., Prinsen P. Wang H., Bai Z., Wang H., Luque R., Xuan J., "Macroporous materials: microfluidic fabrication, functionalization and applications", J. Chem. Soc. Rev. Vol. 46, pp. 855-914, (2017).
[53]      Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A., Doyle, P. S., "Continuous-flow lithography for high-throughput microparticle synthesis", J. Nat. Mater. Vol. 5, pp. 365–369, (2006).
[54]      Serra, C.A., Chang, Z., "Microfluidic-Assisted Synthesis of Polymer Particles", J. Chem. Eng. Technol. Vol. 31, pp. 1099–1115, (2008).
[55]      Zhang, H., Ju, X. J., Xie, R., Cheng, C. J., Ren P. W., Chu, L. Y., "A microfluidic approach to fabricate monodisperse hollow or porous poly(HEMA–MMA) microspheres using single emulsions as templates", J. Colloid Interface Sci. Vol. 336, pp. 235–243, (2009).
[56]      Sim, J. Y., Choi, J. H., Lim, J. M., Cho, S., Kim, S. H., Yang, S. M., "Microfluidic Molding of Photonic Microparticles with Engraved Elastomeric Membranes", Small. Vol. 10, pp. 3979–3985, (2014).
[57]   Amoyav, B., Benny, Q., "Microfluidic Based Fabrication and Characterization of Highly Porous Polymeric Microspheres", Polymers. Vol. 11, pp. 419-433, (2019).
[58]      Sajjadi, S., Alroaithi, M., Chaurasia, A. S., Jahanzad F., "On-the-Fly” Fabrication of Highly-Ordered Interconnected Cylindrical and Spherical Porous Microparticles via Dual Polymerization Zone Microfluidics", Langmiur. Vol. 35, pp. 12731-12743, (2019).