بررسی تجربی تجزیۀ فتوکاتالیستی رنگ آزو قرمز بازیک 46 با استفاده از روش سطح پاسخ- الف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی شیمی، دانشگاه گیلان

2 دکتری مهندسی شیمی، دانشگاه گیلان

3 استاد مهندسی شیمی، دانشگاه گیلان

چکیده

 
در این پژوهش، کارایی فرایند فتوکاتالیستی نانوذره‌های اکسید روی در حذف رنگ آزو قرمز بازیک 46 از محیط آبی در یک سیستم ناپیوسته، در معرض تابش نور فرابنفش با توان 15 وات بررسی شد. هم‌چنین، تعداد نمونه‌ها و بررسی نتایج به‌کمک روش سطح پاسخ پیش‌بینی شد. در این تحقیق پساب مصنوعی با پنج غلظت مختلف رنگ قرمز بازیک 46 (5، 15، 25، 35 و 45 میلی‌گرم بر دقیقه) تهیه و اثر پنج سطح مختلف pH (3، 5، 7، 9 و 11) با مقادیر غلظت متفاوت (1/0، 4/0، 7/0، 1 و 5/1 میلی‌گرم بر دقیقه) از کاتالیست اکسید روی در مدت‌زمان‌های (20، 40، 60، 80 و 100 دقیقه) طی فرایند تجزیۀ فتوکاتالیستی آزمایش شد و تأثیر غلظت مادۀ رنگ‌زا، مقدار کاتالیست مصرفی، اثر pH و مدت‌زمان تابش در حذف رنگ قرمز بازیک 46 از محیط آبی بررسی شد. با توجه به نتایج، با افزایش غلظت اولیۀ محلول رنگ، درصد تخریب فتوکاتالیستی کاهش یافت و با افزایش غلظت کاتالیست تا مقدار بهینه- معادل با 1 گرم بر لیتر-راندمان حذف رنگ قرمز بازیک 46 افزایش پیدا کرد. افزون بر این، درصد حذف رنگ‌زا با مدت‌زمان تابش پرتو رابطه مستقیم داشت. با توجه به تحلیل نتایج در نرم‌افزار طراحی آزمایش، بیش‌ترین حذف رنگ آزو قرمز بازیک 46 در 11=pH و غلظت آلاینده45 میلی‌گرم بر دقیقه با مقدار 61/0 گرم بر لیتر از کاتالیست اکسید روی در مدت‌زمان86 دقیقه به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of Photocatalytic Degradation of Basic Red 46 Azo Dye using Response Surface Methodology

نویسندگان [English]

  • Z. Rashidi 1
  • H. Masoumi 2
  • H. Ghanad Zadeh Gilani 3
1 M. Sc. in Chemical Engineering, University Of Guilan
2 Ph. D. in Chemical Engineering, University Of Guilan
3 Professor of Chemical Engineering, University Of Guilan
چکیده [English]

In this research, the efficiency of the photocatalytic process of zinc oxide nanoparticles in removing Basic Red 46 azo dye from the aqueous solution has been investigated in a batch system, exposed to UV light with a power of 15 W. Also, the number of samples and data analysis were predicted using design expert software. According to the results, with increasing the initial concentration of the dye solution, the percentage of photocatalytic degradation decreases, and with enhancing the catalyst concentration to an optimal value equal to 1 g/L, the removal efficiency of the dye increases. In addition, the percentage of dye removal is directly related to the duration of radiation. According to the analysis of the results in the design expert software, the maximum removal of the Basic Red 46 azo dye was obtained at pH =11 and the contaminant concentration was 45 mg/L with an amount of 0.61 g/L of zinc oxide as catalyst in 86 minutes.

کلیدواژه‌ها [English]

  • Photocatalytic Process
  • Basic Red 46 Azo Dye
  • Dye Degradation
  • Zinc Oxide
  • Response Surface Methodology

 

[1]        Flint, R. W., "The sustainable development of water resources", Water resources update, Vol. 127, pp. 48-59, (2004).
[2]        Rai, P. K., ''Phytoremediation of heavy metals in a tropical impoundment of industrial region''. Environ. Monit. Assess. Vol. 165, pp. 529-537, (2010).
[3]        Rai, P. K., "An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region'', Environ. Monit. Assess. Vol. 184, pp. 421-448, (2012).
[4]        Sanjel, S., Thygerson, S. M., Khanal, S. N., Joshi, S. K., "Environmental and Occupational Pollutants and Their Effects on Health among Brick Kiln Workers", OJSST. Vol. 6, pp. 81-98, (2016).
[5]        Goel, P. K., ''Water pollution: causes, effects and control''. 1st ed., New Age International Publishers, Delhi, (2006).
[6]        Dawood, S., Sen, T. K., Phan, C., "Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption", Water Air Soil Pollut. Vol. 225, pp. 1-16, (2014).
[7]        Kay-Williams, S., "Dyes and Dyeing", Textile History, Vol. 50, pp. 225-231, (2019).
[8]        Zhang, S. J., Yu, H. Q., Li, Q. R., "Radiolytic degradation of Acid Orange 7: A mechanistic study", Chemosphere, Vol. 61, pp. 1003-1011, (2005).
[9]        Lucilha, A. C., Bonancêa, C. E., Barreto, W. J., Takashima, K., ''Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: a spectroscopic study", Spectrochim. Acta A Mol. Biomol. Spectrosc. SPECTROCHIM ACTA A. Vol. 75, pp. 389-393, (2010).
[10]      Wojnarovits, L., Takacs, E., "Irradiation treatment of Azo dye containing wastewater: an overview", Radiat. Phys. Chem. Vol. 77, pp. 225-244, (2008).
[11]      Sandy, A. A., Mirzaei, R. A., "Different methods of dye removal from textile industry effluent". The Second National Conference on Sustainable Management of Soil Resources and Environment, In Persian, (1395).
[12]      Cheremisinoff, N. P., "Handbook of water and wastewater treatment technologies''. 1st ed., Butterworth-Heinemann, Delhi, (2001).
[13]      Ghoreishi, S., Haghighi, R., "Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent'', Chem. Eng. J. Vol. 95, pp. 163-169, (2003).
[14]      Hsueh, C., Huang, Y., Wang, C., Chen, C.-Y., "Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system'', Chemosphere, Vol. 58, pp. 1409-1414, (2005).
[15]      Ahmadpour, A., Haghighi Asl, A., Fallah, N., Milad, b. M., "Investigation of industrial wastewater treatment by photocatalytic method". Sixth Conference on Energy Management and Environment, In Persian, (1395).
[16]      Daneshvar, N., Salari, D., Khataee, A., "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2", J. Photochem. Photobiol. Vol. 162, pp. 317-322, (2004).
[17]      Sobana, N., Swaminathan, M., "The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO," Sep. Purif. Technol. Vol. 56, pp. 101-107, (2007).
[18]      Kumar, R., Umar, A., Kumar, G., Akhtar, M., Wang, Y., Kim, S., "Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye'', Ceram. Int. Vol. 41, pp. 7773-7782, (2015).
[19]      Setarehshenas, N., Hosseini, S., Ahmadi, G., "Optimization and Kinetic Model Development for Photocatalytic Dye Degradation'', Arab J Sci Eng. Vol. 43, pp. 5785–5797, (2018).
[20]      Fahimirad, B., Asghari, A., Rajabi, M., "Investigation of photo-catalytic effect of SnO2/Ac nanocomposite on photo-degradation of basic yellow 13 and rodamin B dyes'', Vol. 12, pp. 57-63, (2018).
[21]      Elhadj, M., Samira, A., Mohamed, T., Djawad, F., Asma, A., Djamel, N., "Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies'', Sep. Sci. Technol. Vol. 55, pp. 867-885, (2020).
[22]      Tamad Kala, "Oxide nanoparticles on RASA brand, https://tamadkala.com, In Persian, (2020).
[23]      Setarehshenas, N., Hosseini, S. H., Nasr Esfahani, M., Mansouri, Mohsen., Ahmadi, G., "Photocatalytic analysis of red azo dye using 46 using activated carbon enriched ZrO2 / UV process". J. Appl. Chem. Vol. 13, pp. 53-65, In Persian, (2017).
[24]      Sabbaghi, P., Duraghi, Fatemeh., "Photocatalytic degradation of methylene blue with the help of ZnO / SnO2 nanocomposite". Iran. J. Chem. Chem. Eng. Vol. 36, pp. 141-149, In Persian, (2017).
[25]      Pazaki, M., Qasemzadeh, R., Yavari, M., Abdoli, M. A., "Investigation of the performance of doped titanium dioxide (2Ag / TiO) nanoparticles in the photocatalytic degradation of azithromycin". Iran. J. Chem. Chem. Eng. Vol. 37, pp. 63-72, In Persian, (2017).
[26]      Mirshahouri, B., Dadkhah, A., Shamloui, H. R., "Preparation and Investigation of Photocatalytic Properties of Cellulose Green Nanoparticles with Palladium Complex". Iran. J. Chem. Chem. Eng. Vol. 48, pp. 65-76, In Persian, (2019).
[27]      Rezaei, M., Salem, Sh., "Investigation of new methods to improve the photocatalytic performance of titanium dioxide nanoparticles". IJChE. Vol. 14, pp. 70-81, In Persian, (2015).
[28]      Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., Murugesan, V., "Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2", Sol. Energy Mater. Sol. Cells. Vol. 77, pp. 65-82, (2003).
[29]      Nasirizadeh, N., Dehghani, M., Jafari, S., "Degradation of red alkaline dye 13 by combined sonoelectrochemical process in the presence of titanium dioxide nanoparticles", JCST. Vol. 10, pp. 137-144, In Persian, (2016).
[30]      Khataee, A. R., "Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: Artificial neural network modelling", Environ. Technol. Vol. 30, pp. 1155-1168, (2009).
[31]      Gözmena, B., Turabik, M., Hesenov, A., "Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system", J. Hazard. Mater. Vol. 164, pp. 1487–1495, (2009).
[32]      Torres-Luna, J. A., Giraldo-Gómez, G. I., Sanabria-González, N. R., Carriazo, J. G., "Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite", Bull. Mater. Sci. Vol. 42, pp.1-10, (2019).
[33]      Berkani, M., Bouchareb, M., Bouhelassa, M., Kadmi, Y., "Photocatalytic Degradation of Industrial Dye in Semi-Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box–Wilson Approach", Top Catal. Vol. 63, pp. 964–975, (2020).
[34]      Asgari, Q., Mohammadi, A., Bagheri, M., Chavoshi, S., "Investigation of dye removal efficiency of textile industries using photocatalytic process of titanium dioxide irradiated with UV-LED lamps: a case study, dye yarn factory Hamedan ", MJIRI. Vol. 24, pp. 143-150, In Persian, (2017).