مروری بر استفاده از فناوری ریزسیالات در ساخت زیست‌سازه‌های مهندسی‌شدۀ قلبی عروقی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناس ارشد مهندسی شیمی، دانشگاه صنعتی شریف

2 استادیار مهندسی شیمی، دانشگاه صنعتی شریف

چکیده

در سال‌های اخیر مهندسی بافت قلب اهمیت ویژه‌ای یافته است؛ زیرا این بافت توانایی بسیار اندکی در بازسازی خود دارد. از همین رو این مقاله به مرور مطالعات اخیر در سامانه‌های آزمایشگاهی توسعه ­یافته برای بهبود روش‌های تشخیص و درمان بیماری‌های قلب و عروق پرداخته­ ‌است. در این زمینه روش­ های ریزسیالاتی برای ساخت زیستی سامانه‌های دارای عمل‌کرد مشابه با بافت قلب و عروق مانند استفاده از رشته­ های میکرونی یا نانویی، الگوسازی در ابعاد میکرونی و پرینت زیستی سه‌بعدی با مادۀ فداشونده و یا همراه با کانال‌های ریزسیالاتی، نتیجۀ مطلوبی داشته‌اند. با وجود پیشرفت‌ها اما هم‌چنان در این زمینه چالش‌هایی وجود دارد که این پژوهش بدان‌ها پرداخته است. به‌طور کلی می‌توان گفت که تا به امروز روش‌های ریزسیالاتی راه را برای همانندسازی بافت‌های قلبی و عروقی رشدیافته در آزمایشگاه که کاربرد‌هایی مانند سنجیدن اثر دارو‌ها و افزایش دانش نسبت به عمل‌کرد ارگان‌ها دارند، هموار کرده است. در آینده این سامانه­ های نوین میکروفیزیولوژیکی برای این بافت می‌تواند امکان‌ گذار از تحقیقات آزمایشگاه به درمان‌های بیمارستانی را نیز فراهم آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review of Using Microfluidics Technology for Fabrication of Cardiovascular Engineered Bioscaffolds

نویسندگان [English]

  • S. Khalighi 1
  • M. Saadatmand 2
1 M. Sc. Student of Chemical Engineering, Sharif University of Technology
2 Assistant Professor of Chemical Engineering, Sharif University of Technology
چکیده [English]

In the recent years, bioengineered cardiac tissues are of particular significance because of the extremely limited ability of the myocardium to self-regenerate. In this article, the recent advancements in the development of experimental in vitro platforms for next generation of the diagnostics and therapy validation are reviewed. Specially, here the present progress of the microfluidics technology application such as micro/nano fibers, micropatterning, and 3D bioprinting with sacrificial material or with microfluidic channels for the development of cardiovascular systems’ biofabrication at the tissue- and organ levels is described. With all the improvements in this field, there are still difficulties in prolonged cells viability, thick tissue fabrication for higher mimicry levels, and scaffolds mechanical stability in vivo. Until now, microfluidic methods pave the way for in vitro recapitulating of cardiovascular tissue for drug testing and providing basic knowledge of organ’s functions. In the future, with novel microphysiological systems, the transition from bench to bedside will be accelerated.

کلیدواژه‌ها [English]

  • Microfluidics
  • Cardiovascular Tissue
  • Bio-Printing
  • Vascular Network
  • Tissue Engineering

 

[1]        Portillo-Lara, R., Spencer, A. R., Walker, B. W., Sani, E. S., Annabi, N., "Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation", Biomaterials, Vol. 198, pp. 78-94, (2019).
[2]        Kaese, S., Verheule, S., "Cardiac electrophysiology in mice: a matter of size", Frontiers in physiology, Vol. 3, p. 345, (2012).
[3]        Ryan, A. J., Brougham, C. M., Garciarena, C. D., Kerrigan, S. W., O’Brien, F. J., "Towards 3D in vitro models for the study of cardiovascular tissues and disease", Drug Discovery Today, Vol. 21, No. 9, pp. 1437-1445, (2016).
[4]        Shah, R. R., "Can pharmacogenetics help rescue drugs withdrawn from the market?", (2006).
[5]        Pinnell, J., Turner, S., Howell, S., "Cardiac muscle physiology", Continuing Education in Anaesthesia, Critical Care and Pain, Vol. 7, No. 3, pp. 85-88, (2007).
[6]        Rouwkema, J., Khademhosseini, A., "Vascularization and angiogenesis in tissue engineering: beyond creating static networks", Trends in biotechnology, Vol. 34, No. 9, pp. 733-745, (2016).
[7]        Akbari, M., Tamayol, A., Annabi, N., Juncker, D., Khademhosseini, A., "Microtechnologies in the fabrication of fibers for tissue engineering," Microfluidics for Medical Applications, pp. 1-18, (2014).
[8]        Zhang, J., Zheng, T., Alarçin, E., Byambaa, B., Guan, X., Ding, J., Zhang, Y. S., Li, Z., "Porous electrospun fibers with self‐sealing functionality: An enabling strategy for trapping biomacromolecules", Small, Vol. 13, No. 47, p. 1701949, (2017).
[9]        Zhao, X., Sun, X., Yildirimer, L., Lang, Q., Lin, Z. Y. W., Zheng, R., Zhang, Y., Cui, W., Annabi, N., Khademhosseini, A., "Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing", Acta biomaterialia, Vol. 49, pp. 66-77, (2017).
[10]      Masoumi, N., Larson, B. L., Annabi, N., Kharaziha, M., Zamanian, B., Shapero, K. S., Cubberley, A. T., Camci‐Unal, G., Manning, K. B., Mayer Jr, J. E., "Electrospun PGS: PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy", Advanced healthcare materials, Vol. 3, No. 6, pp. 929-939, (2014).
[11]      Tamayol, A., Najafabadi, A. H., Aliakbarian, B., Arab‐Tehrany, E., Akbari, M., Annabi, N., Juncker, D., Khademhosseini, A., "Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs", Advanced healthcare materials, Vol. 4, No. 14, pp. 2146-2153, (2015).
[12]      Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., Sato, K., Miura, S., Iwanaga, S., Kuribayashi-Shigetomi, K., "Metre-long cell-laden microfibres exhibit tissue morphologies and functions", Nature materials, Vol. 12, No. 6, p. 584, (2013).
[13]      Agbolaghi, S., Mohammadi vash, A., "A Review on Nanofiber Scaffolds by Focusing on Constituents and Procedures", Iran Journal of Chemical Engineering, Vol. 20, No. 115, pp. 6-16, In Persian, (2021).
[14]      Ellis, M. J., Chaudhuri, J. B., "Poly (lactic‐co‐glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold", Biotechnology and bioengineering, Vol. 96, No. 1, pp. 177-187, (2007).
[15]      Leng, L., McAllister, A., Zhang, B., Radisic, M., Günther, A., "Mosaic hydrogels: one‐step formation of multiscale soft materials", Advanced materials, Vol. 24, No. 27, pp. 3650-3658, (2012).
[16]      Shi, X., Ostrovidov, S., Zhao, Y., Liang, X., Kasuya, M., Kurihara, K., Nakajima, K., Bae, H., Wu, H., Khademhosseini, A., "Microfluidic spinning ofcell‐responsive grooved microfibers", Advanced Functional Materials, Vol. 25, No. 15, pp. 2250-2259, (2015).
[17]      Choi, C. -H., Yi, H., Hwang, S., Weitz, D. A., Lee, C.-S., "Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow", Lab on a Chip, Vol. 11, No. 8, pp. 1477-1483, (2011).
[18]      Jun, Y., Kang, E., Chae, S., Lee, S. -H., "Microfluidic spinning of micro-and nano-scale fibers for tissue engineering", Lab on a Chip, Vol. 14, No. 13, pp. 2145-2160, (2014).
[19]      Akbari, M., Tamayol, A., Laforte, V., Annabi, N., Najafabadi, A. H., Khademhosseini, A., Juncker, D., "Composite living fibers for creating tissue constructs using textile techniques", Advanced functional materials, Vol. 24, No. 26, pp. 4060-4067, (2014).
[20]      Wu, Y., Wang, L., Guo, B., Ma, P. X., "Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy", Acs Nano, Vol. 11, No. 6, pp. 5646-5659, (2017).
[21]      Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., Juncker, D., "Fiber-based tissue engineering: progress, challenges, and opportunities", Biotechnology advances, Vol. 31, No. 5, pp. 669-687, (2013).
[22]      Shapira-Schweitzer, K., Seliktar, D., "Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial", Acta biomaterialia, Vol. 3, No. 1, pp. 33-41, (2007).
[23]      Cheng, J., Jun, Y., Qin, J., Lee, S. -H., "Electrospinning versus microfluidic spinning of functional fibers for biomedical applications", Biomaterials, Vol. 114, pp. 121-143, (2017).
[24]      Kai, D., Prabhakaran, M. P., Jin, G., Ramakrishna, S., "Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 98, No. 2, pp. 379-386, (2011).
[25]      Breukers, R., Gilmore, K., Kita, M., Wagner, K., Higgins, M., Moulton, S., Clark, G. M., Officer, D., Kapsa, R., Wallace, G., "Creating conductive structures for cell growth: Growth and alignment of myogenic cell types on polythiophenes", Journal of Biomedical Materials Research Part A, Vol. 95, No. 1, pp. 256-268, (2010).
[26]      Suhaeri, M., Subbiah, R., Kim, S.-H., Kim, C. -H., Oh, S. J., Kim, S.-H., Park, K., "Novel platform of cardiomyocyte culture and coculture via fibroblast-derived matrix-coupled aligned electrospun nanofiber", ACS applied materials & interfaces, Vol. 9, No. 1, pp. 224-235, (2016).
[27]      Ahmadi, P., Nazeri, N., Derakhshan, M. A., Ghanbari, H., "Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering", International Journal of Biological Macromolecules, Vol. 180, pp. 590-598, (2021).
[28]      Flaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hebraud, A., Agbulut, O., Schlatter, G., "Design of functional electrospun scaffolds based on poly (glycerol sebacate) elastomer and poly (lactic acid) for cardiac tissue engineering", ACS Biomaterials Science & Engineering, Vol. 6, No. 4, pp. 2388-2400, (2020).
[29]      Engelmayr Jr, G. C., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., Freed, L. E., "Accordion-like honeycombs for tissue engineering of cardiac anisotropy", Nature materials, Vol. 7, No. 12, p. 1003, (2008).
[30]      Kim, H. N., Jiao, A., Hwang, N. S., Kim, M. S., Kim, D. -H., Suh, K. -Y., "Nanotopography-guided tissue engineering and regenerative medicine", Advanced drug delivery reviews, Vol. 65, No. 4, pp. 536-558, (2013).
[31]      Trantidou, T., Rao, C., Barrett, H., Camelliti, P., Pinto, K., Yacoub, M., Athanasiou, T., Toumazou, C., Terracciano, C., Prodromakis, T., "Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications", Biofabrication, Vol. 6, No. 2, p. 025004, (2014).
[32]      Ma, Z., Wang, J., Loskill, P., Huebsch, N., Koo, S., Svedlund, F. L., Marks, N. C., Hua, E. W., Grigoropoulos, C. P., Conklin, B. R.,"Self-organizing human cardiac microchambers mediated by geometric confinement", Nature communications, Vol. 6, p. 7413, (2015).
[33]      Castano, A., Hortigüela, V., Lagunas, A., Cortina, C., Montserrat, N., Samitier, J., Martinez, E., "Protein patterning on hydrogels by direct microcontact printing: application to cardiac differentiation", RSC Advances, Vol. 4, No. 55, pp. 29120-29123, (2014).
[34]      Agarwal, A., Farouz, Y., Nesmith, A. P., Deravi, L. F., McCain, M. L., Parker, K. K., "Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip", Advanced functional materials, Vol. 23, No. 30, pp. 3738-3746, (2013).
[35]      McCain, M. L., Agarwal, A., Nesmith, H. W., Nesmith, A. P., Parker, K. K., "Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues", Biomaterials, Vol. 35, No. 21, pp. 5462-5471, (2014).
[36]      Annabi, N., Tsang, K., Mithieux, S. M., Nikkhah, M., Ameri, A., Khademhosseini, A., Weiss, A. S., "Highly elastic micropatterned hydrogel for engineering functional cardiac tissue", Advanced functional materials, Vol. 23, No. 39, pp. 4950-4959, (2013).
[37]      Lind, J. U., Yadid, M., Perkins, I., O'Connor, B. B., Eweje, F., Chantre, C. O., Hemphill, M. A., Yuan, H., Campbell, P. H., Vlassak, J. J., "Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening", Lab on a Chip, Vol. 17, No. 21, pp. 3692-3703, (2017).
[38]      Liau, B., Christoforou, N., Leong, K. W., Bursac, N., "Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function", Biomaterials, Vol. 32, No. 35, pp. 9180-9187, (2011).
[39]      Brown, T. E., Anseth, K. S., "Spatiotemporal hydrogel biomaterials for regenerative medicine", Chemical Society Reviews, Vol. 46, No. 21, pp. 6532-6552, (2017).
[40]      Lee, S. -H., Moon, J. J., West, J. L.,"Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration", Biomaterials, Vol. 29, No. 20, pp. 2962-2968, (2008).
[41]      Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., Akhyari, P., Khademhosseini, A., "Directed 3D cell alignment and elongation in microengineered hydrogels", Biomaterials, Vol. 31, No. 27, pp. 6941-6951, (2010).
[42]      Saini, H., Navaei, A., Van Putten, A., Nikkhah, M., "3D cardiac microtissues encapsulated with the co‐culture of cardiomyocytes and cardiac fibroblasts", Advanced healthcare materials, Vol. 4, No. 13, pp. 1961-1971, (2015).
[43]      Karp, J. M., Yeo, Y., Geng, W., Cannizarro, C., Yan, K., Kohane, D. S., Vunjak-Novakovic, G., Langer, R. S., Radisic, M., "A photolithographic method to create cellular micropatterns", Biomaterials, Vol. 27, No. 27, pp. 4755-4764, (2006).
[44]      Sunyer, R., Jin, A. J., Nossal, R., Sackett, D. L., "Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response", PloS one, Vol. 7, No. 10, p. e46107, (2012).
[45]      Tong, X., Jiang, J., Zhu, D., Yang, F., "Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions", ACS Biomaterials Science & Engineering, Vol. 2, No. 5, pp. 845-852, (2016).
[46]      Choi, Y. S., Vincent, L. G., Lee, A. R., Kretchmer, K. C., Chirasatitsin, S., Dobke, M. K., Engler, A. J., "The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices", Biomaterials, Vol. 33, No. 29, pp. 6943-6951, (2012).
[47]      Rajendran, P. S., Nakamura, K., Ajijola, O. A., Vaseghi, M., Armour, J. A., Ardell, J. L., Shivkumar, K., "Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system", The Journal of physiology, Vol. 594, No. 2, pp. 321-341, (2016).
[48]      Yong, K. W., Li, Y., Huang, G., Lu, T. J., Safwani, W. K. Z. W., Pingguan-Murphy, B., Xu, F., "Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy", American Journal of Physiology-Heart and Circulatory Physiology, Vol. 309, No. 4, pp. H532-H542, (2015).
[49]      Justin, R. T., Engler, A. J., "Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate", PloS one, Vol. 6, No. 1, pp. e15978, (2011).
[50]      Arcaute, K., Mann, B. K., Wicker, R. B., "Stereolithography of three-dimensional bioactive poly (ethylene glycol) constructs with encapsulated cells", Annals of biomedical engineering, Vol. 34, No. 9, pp. 1429-1441, (2006).
[51]      Gauvin, R., Chen, Y. -C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., Bae, H., Chen, S., Khademhosseini, A., "Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography", Biomaterials, Vol. 33, No. 15, pp. 3824-3834, (2012).
[52]      Xu, T., Zhao, W., Zhu, J. -M., Albanna, M. Z., Yoo, J. J., Atala, A., "Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology", Biomaterials, Vol. 34, No. 1, pp. 130-139, (2013).
[53]      Ozbolat, I. T., Hospodiuk, M., "Current advances and future perspectives in extrusion-based bioprinting", Biomaterials, Vol. 76, pp. 321-343, (2016).
[54]      Culver, J. C., Hoffmann, J. C., Poché, R. A., Slater, J. H., West, J. L., Dickinson, M. E., "Three‐dimensional biomimetic patterning in hydrogels to guide cellular organization", Advanced materials, Vol. 24, No. 17, pp. 2344-2348, (2012).
[55]      Ali, M., Pages, E., Ducom, A., Fontaine, A., Guillemot, F., "Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution", Biofabrication, Vol. 6, No. 4, pp. 045001, (2014).
[56]      Murphy, S. V., Atala, A., "3D bioprinting of tissues and organs", Nature biotechnology, Vol. 32, No. 8, pp. 773, (2014).
[57]      Jungst, T., Smolan, W., Schacht, K., Scheibel, T., Groll, J. R., "Strategies and molecular design criteria for 3D printable hydrogels", Chemical reviews, Vol. 116, No. 3, pp. 1496-1539, (2015).
[58]      Lee, V. K., Lanzi, A. M., Ngo, H., Yoo, S. -S., Vincent, P. A., Dai, G., "Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology", Cellular and molecular bioengineering, Vol. 7, No. 3, pp. 460-472, (2014).
[59]      Jia, W., Gungor-Ozkerim, P. S., Zhang, Y. S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M. R., Shin, S. R., "Direct 3D bioprinting of perfusable vascular constructs using a blend bioink", Biomaterials, Vol. 106, pp. 58-68, (2016).
[60]      Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. -R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'Erba, V., "Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip", Biomaterials, Vol. 110, pp. 45-59, (2016).
[61]      Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H.-J., Ramadan, M. H., Hudson, A. R., Feinberg, A. W., "Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels", Science advances, Vol. 1, No. 9, p. e1500758, (2015).
[62]      Shin, S., Park, S., Park, M., Jeong, E., Na, K., Youn, H. J., Hyun, J., "Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives", BioResources, Vol. 12, No. 2, pp. 2941-2954, (2017).
[63]      Kang, H. -W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., Atala, A., "A 3D bioprinting system to produce human-scale tissue constructs with structural integrity", Nature biotechnology, Vol. 34, No. 3, pp. 312, (2016).
[64]      Sung, H.-J., Meredith, C., Johnson, C., Galis, Z. S., "The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis", Biomaterials, Vol. 25, No. 26, pp. 5735-5742, (2004).
[65]      Discher, D. E., Janmey, P., Wang, Y.-l., "Tissue cells feel and respond to the stiffness of their substrate", Science, Vol. 310, No. 5751, pp. 1139-1143, (2005).
[66]      Shin, Y. J., Shafranek, R. T., Tsui, J. H., Walcott, J., Nelson, A., Kim, D.-H., "3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix", Acta Biomaterialia, Vol. 119, pp. 75-88, (2021).
[67]      Sukmana, I., "Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct", The Scientific World Journal, Vol. 2012, (2012).
[68]      Lee, V. K., Kim, D. Y., Ngo, H., Lee, Y., Seo, L., Yoo, S. -S., Vincent, P. A., Dai, G., "Creating perfused functional vascular channels using 3D bio-printing technology", Biomaterials, Vol. 35, No. 28, pp. 8092-8102, (2014).
[69]      Cui, X., Boland, T., "Human microvasculature fabrication using thermal inkjet printing technology", Biomaterials, Vol. 30, No. 31, pp. 6221-6227, (2009).
[70]      Kim, J. A., Kim, H. N., Im, S.-K., Chung, S., Kang, J. Y., Choi, N., "Collagen-based brain microvasculature model in vitro using three-dimensional printed template", Biomicrofluidics, Vol. 9, No. 2, p. 024115, (2015).
[71]      Muscari, C., Giordano, E., Bonafè, F., Govoni, M., Guarnieri, C., "Strategies affording prevascularized cell-based constructs for myocardial tissue engineering", Stem cells international, Vol. 2014, (2014).
[72]      Bogorad, M. I., DeStefano, J., Karlsson, J., Wong, A. D., Gerecht, S., Searson, P. C., "in vitro microvessel models", Lab on a Chip, Vol. 15, No. 22, pp. 4242-4255, (2015).
[73]      West, J. L., Moon, J. J., "Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials", Current topics in medicinal chemistry, Vol. 8, No. 4, pp. 300-310, (2008).
[74]      Yang, P., Huang, X., Shen, J., Wang, C., Dang, X., Mankin, H., Duan, Z., Wang, K., "Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold", BMC musculoskeletal disorders, Vol. 14, No. 1, p. 318, (2013).
[75]      Zhu, W., Qu, X., Zhu, J., Ma, X., Patel, S., Liu, J., Wang, P., Lai, C. S. E., Gou, M., Xu, Y., "Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture", Biomaterials, Vol. 124, pp. 106-115, (2017).
[76]      Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H. T., Cohen, D. M., Toro, E., Chen, A. A., Galie, P. A., Yu, X., "Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues", Nature materials, Vol. 11, No. 9, pp. 768-774, (2012).
[77]      Mirabella, T., MacArthur, J., Cheng, D., Ozaki, C., Woo, Y., Yang, M., Chen, C., "3D-printed vascular networks direct therapeutic angiogenesis in ischaemia", Nature biomedical engineering, Vol. 1, No. 6, p. 0083, (2017).
[78]      Gelber, M., Hurst, G., Comi, T., Bhargava, R., "Model-guided design and characterization of a high-precision 3D printing process for carbohydrate glass", Additive Manufacturing, Vol. 22, pp. 38-50, (2018).
[79]      Xu, C., Lee, W., Dai, G., Hong, Y., "Highly elastic biodegradable single-network hydrogel for cell printing", ACS applied materials & interfaces, Vol. 10, No. 12, pp. 9969-9979, (2018).
[80]      Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., Lewis, J. A., "3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs", Advanced materials, Vol. 26, No. 19, pp. 3124-3130, (2014).
[81]      Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., Lewis, J. A., "Three-dimensional bioprinting of thick vascularized tissues", Proceedings of the national academy of sciences, Vol. 113, No. 12, pp. 3179-3184, (2016).
[82]      Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., Barabaschi, G., Demarchi, D., Dokmeci, M. R., Yang, Y., "Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs", Lab on a Chip, Vol. 14, No. 13, pp. 2202-2211, (2014).
[83]      Suntornnond, R., Tan, E. Y. S., An, J., Chua, C. K., "A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures", Scientific reports, Vol. 7, No. 1, p. 16902, (2017).
[84]      Zhao, X., Liu, L., Wang, J., Xu, Y., Zhang, W., Khang, G., Wang, X., "In vitro vascularization of a combined system based on a 3D printing technique", Journal of tissue engineering and regenerative medicine, Vol. 10, No. 10, pp. 833-842, (2016).
[85]      Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., Feinberg, A. W., "FRESH 3D bioprinting a full-size model of the human heart", ACS Biomaterials Science & Engineering, Vol. 6, No. 11, pp. 6453-6459, (2020).
[86]      Xu, C., Chai, W., Huang, Y., Markwald, R. R., "Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes", Biotechnology and bioengineering, Vol. 109, No. 12, pp. 3152-3160, (2012).
[87] Visser, C. W., Kamperman, T., Karbaat, L. P., Lohse, D., Karperien, M., "In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio) materials", Science advances, Vol. 4, No. 1, p. eaao1175, (2018).