حذف یون سولفات و نیترات از محلول‌های آبی با استفاده ازکلینوپتیلولیت اصلاح‌شده در فرایند جذب سطحی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار مهندسی شیمی، دانشگاه قم

چکیده

زئولیت­ ها مصالحی با ساختار آلومیناسیلیکاتی­ هستند که عمل‌کرد بسیار مناسبی برای جذب آلاینده ­ها از محلول­ های آبی دارند. در این مقاله اصلاح زئولیت طبیعی کلینوپتیلولیت با محلول ­های مختلف اسیدی، بازی و نمکی برای حذف آلاینده ­های یون سولفات و نیترات از آب بررسی شده است. تأثیر پارامترهای متفاوتی هم‌چون زمان، غلظت آلاینده، میزان جاذب و pH بر عمل‌کرد جاذب بررسی شد. حد اکثر حذف آلاینده ­ها در شرایط بهینه در 5/9pH= و نسبت غلظت جاذب به آلاینده 18 و زمان اختلاط 5 ساعت بود. هم­چنین نتایج ایزوترم ­های جذب لانگمویر و فروندلیچ نشان داد که حد اکثر ظرفیت جذب برای نیترات 46/76 میلی­ گرم بر گرم و سولفات 35/69 میلی­ گرم بر گرم است. نتایج نشان داد که کلینوپتیولیت اصلاح‌شده یک جاذب ارزان با دسترسی آسان و راندمان بالای جذب یون­های نیترات و سولفات از محلول ­های آبی است.

کلیدواژه‌ها


عنوان مقاله [English]

Using Modified Clinoptilolite to Remove Sulfate and Nitrate Ions from Aqueous Solution in Adsorption Process

نویسنده [English]

  • M. Sedighi
Assistant Professor of Chemical Engineering, University of Qom
چکیده [English]

Clinoptilolite is a cheap and abundant zeolite. They are alumino-silicate that play important role in water and wastewater treatment. The clinoptilolite are characterized by using XRD, FT-IR. The best method of modification and operating conditions were detected. Clinoptilolite was papered from Manzarieh (Qom Province) and then was crushed by ball milling to reduce the size to below 400 nm. The spectrophotometer was utilized to detect the removal efficiency. Addition of adsorbent to solution containing nitrate and sulfate ions has been carried out with the thorough investigation of main parameters such as type of modification, the amount of adsorbent to pollutant concentration, contact time and pH. The results show that clinoptilolite has important characteristics in removing ions from water. Furthermore modification of zeolite can improve the efficiency of adsorbent. Type of modification plays an important role in removing total iron and phosphate ions. The modified zeolite can remove nitrate up to 94% and sulfate ion up to 98 % at different pH and concentrations. Increasing contact time could improve removal efficiency. The ratio of adsorbent to initial concentration and pH were investigated as important factors. The study shows that clinoptilolite can be used as a promising and low-cost adsorbent for removal of nitrate and phosphate ions from aqueous solution.

کلیدواژه‌ها [English]

  • Clinoptilolite
  • Adsorption
  • Sulfate
  • Nitrate
  • Langmuir
  • Freundlich
[1]        Sedighi, M., Mohammadi, M., "Application of green novel NiO/ZSM-5 for removal of lead and mercury ions from aqueous solution: investigation of adsorption parameters", Journal of Water and Environmental Nanotechnology, 3: pp. 301-310, (2018).
[2]        Mohammadi, M., Sedighi, M., Natarajan, R., Hassan, S. H. A.,Ghasemi, M., "Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization", Korean Journal of Chemical Engineering, 38: pp. 72-80, (2021).
[3]        Mohammadi, M., Sedighi, M., Ghasemi, M., "Systematic investigation of simultaneous removal of phosphate/nitrate from water using Ag/rGO nanocomposite: Development, characterization, performance and mechanism", Research on Chemical Intermediates, 47: pp. 1377-1395, (2021).
[4]        Shamshiri, A., Alimohammadi, V., Sedighi, M., Jabbari, E.,Mohammadi, M., "Enhanced removal of phosphate and nitrate from aqueous solution using novel modified natural clinoptilolite nanoparticles: process optimization and assessment", International Journal of Environmental Analytical Chemistry, pp. 1-20, (2020).
[5]        Akgül, M., Karabakan, A., Acar, O.,Yürüm, Y., "Removal of silver (I) from aqueous solutions with clinoptilolite", Microporous and Mesoporous Materials, 94: pp. 99-104, (2006).
[6]        Sedighi, M., Aljlil, S. A., Alsubei, M. D., Ghasemi, M.,Mohammadi, M., "Performance optimisation of microbial fuel cell for wastewater treatment and sustainable clean energy generation using response surface methodology", Alexandria engineering journal, 57: pp. 4243-4253, (2018).
[7]        Çoruh, S., Şenel, G.,Ergun, O. N., "A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal", Journal of hazardous materials, 180: pp. 486-492, (2010).
[8]        Morales, J. A., de Graterol, L. S.,Mesa, J., "Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography", Journal of Chromatography A, 884: pp. 185-190, (2000).
[9]        Mohammadi, M., Sedighi, M., Alimohammadi, V., "Modeling and optimization of Nitrate and total Iron removal from wastewater by TiO2/SiO2 nanocomposites", International Journal of Nano Dimension, 10: pp. 195-208, (2019).
[10]      Huo, H., Lin, H., Dong, Y., Cheng, H., Wang, H.,Cao, L., "Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite", Journal of hazardous materials, 229: pp. 292-297, (2012).
[11]      Alimohammadi, V., Sedighi, M.,Jabbari, E., "Response surface modeling and optimization of nitrate removal from aqueous solutions using magnetic multi-walled carbon nanotubes", Journal of environmental chemical engineering, 4: pp. 4525-4535, (2016).
[12]      Shahveh, S., Sedighi, M., Mohammadi, M., "A Novel Application of Combined Biological and Physical Method for Nitrate and Nitrite Removal from Water", Journal of Environmental Science and Technology, 22: pp. 183-192, (2020).
[13]      Fraser, P.,Chilvers, C., "Health aspects of nitrate in drinking water", Science of the Total Environment, 18: pp. 103-116, (1981).
[14]      Faghihian, H., Kabiri-Tadi, M., "Removal of zirconium from aqueous solution by modified clinoptilolite", Journal of Hazardous Materials, 178: pp. 66-73, (2010).
[15]      Mohammadi, M., Sedighi, M., Hemati, M., "Removal of petroleum asphaltenes by improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: Process optimization and adsorption isotherm", Petroleum, 6: pp. 182-188, (2020).
[16]      Mousavi, D. S., Mohammadi, M., "A study of asphaltene adsorption manner on reservoir rock surfaces with application of langmuir isotherm modification", (2014).
[17]      Halajnia, A., Oustan, S., Najafi, N., Khataee, A., Lakzian, A., "Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide", Applied Clay Science, 80: pp. 305-312, (2013).
[18]      Karthikeyan, P., Elanchezhiyan, S. S., Preethi, J., Talukdar, K., Meenakshi, S., Park, C. M.,"Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment", Ceramics International, 47: pp. 732-739, (2021).
[19]      Sadik, R., Lahkale, R., Hssaine, N., ElHatimi, W., Diouri, M.,Sabbar, E., "Sulfate removal from wastewater by mixed oxide-LDH: Equilibrium, Kinetic and Thermodynamic Studies", J. Mater. Environ. Sci, 6: pp. 2895-2905, (2015).
[20]      Khabazipour, M., Anbia, M., "Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies", Journal of Inorganic and Organometallic Polymers and Materials, pp. 1-24, (2021).
[21]      Fotsing, P. N., Bouazizi, N., Woumfo, E. D., Mofaddel, N., Le Derf, F.,Vieillard, J., "Investigation of Chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent", Journal of Environmental Chemical Engineering, 9: p. 104618, (2021).
[22]      Ishiguro, M., Nakaishi, K., Nakajima, T., "Saturated hydraulic conductivity of a volcanic ash soil affected by repulsive potential energy in a multivalent anionic system", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230: pp. 81-88, (2003).
[23]      Peak, D., Ford, R. G., Sparks, D. L., "An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite", Journal of colloid and interface science, 218: pp. 289-299, (1999).
[24]      Huang, Y. H., Zhang, T. C., "Effects of low pH on nitrate reduction by iron powder", Water Research, 38: pp. 2631-2642, (2004).
[25]      Bhatnagar, A., Kumar, E.,Sillanpää, M., "Nitrate removal from water by nano-alumina: Characterization and sorption studies", Chemical Engineering Journal, 163: pp. 317-323, (2010).
[26]      Sedighi, M., Mohammadi, M.,Sedighi, M., "Green SAPO-5 supported NiO nanoparticles as a novel adsorbent for removal of petroleum asphaltenes: Financial assessment", Journal of Petroleum Science and Engineering, 171: pp. 1433-1442, (2018).
[27]      Karatas, M., "Removal of Pb (II) from water by natural zeolitic tuff: kinetics and thermodynamics", Journal of hazardous materials, 199: pp. 383-389, (2012).
[28]      Wang, S., Peng, Y., "Natural zeolites as effective adsorbents in water and wastewater treatment", Chemical engineering journal, 156: pp. 11-24, (2010).
[29]      Wang, X., Nguyen, A. V., "Characterisation of electrokinetic properties of clinoptilolite before and after activation by sulphuric acid for treating CSG water", Microporous and Mesoporous Materials, 220: pp. 175-182, (2016).
[30]      Malekpour, A., Hajialigol, S.,Taher, M. A., "Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite", Journal of Hazardous Materials, 172: pp. 229-233, (2009).
[31]      Jafari, S., Nezamzadeh-Ejhieh, A., "Supporting of coupled silver halides onto clinoptilolite nanoparticles as simple method for increasing their photocatalytic activity in heterogeneous photodegradation of mixture of 4-methoxy aniline and 4-chloro-3-nitro aniline", Journal of colloid and interface science, 490: pp. 478-487, (2017).
[32]      Ruíz-Baltazar, A., Esparza, R., Gonzalez, M., Rosas, G., Pérez, R., "Preparation and characterization of natural zeolite modified with iron nanoparticles", Journal of Nanomaterials, 2015, (2015).
[33]      Koshy, N., Singh, D., "Fly ash zeolites for water treatment applications", Journal of Environmental Chemical Engineering, 4: pp. 1460-1472, (2016).
[34]      Mittal, A., Kurup, L., Mittal, J., "Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers", Journal of hazardous materials, 146: pp. 243-248, (2007).
[35]      Mohammadi, M., Khamehchi, E., Sedighi, M., "The prediction of asphaltene adsorption isotherm constants on mineral surfaces", Petroleum science and technology, 32: pp. 870-877, (2014).
[36]      Duff, D. G., Ross, S. M.,Vaughan, D. H., "Adsorption from solution: an experiment to illustrate the Langmuir adsorption isotherm", Journal of Chemical Education, 65: p. 815, (1988).
[37]      Gokce, Y., Yaglikci, S., Yagmur, E., Banford, A., Aktas, Z., "Adsorption behaviour of high performance activated carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol", Journal of Environmental Chemical Engineering, 9: p. 104819, (2021).
[38]      Castillo, X., Pizarro, J., Ortiz, C., Cid, H., Flores, M., De Canck, E.,Van Der Voort, P., "A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water", Microporous and Mesoporous Materials, 272: pp. 184-192, (2018).
[39]      Alimohammadi, V., Sedighi, M., Jabbari, E., "Optimization of sulfate removal from wastewater using magnetic multi-walled carbon nanotubes by response surface methodology", Water Science and Technology, 76: pp. 2593-2602, (2017).
[40]      Tian, Z., Feng, T., Yang, G., Zhao, T., Wang, L., "Removal of sulfate from aqueous solution by magnetic chitosan microspheres", Desalination and Water Treatment, 161: pp. 293-303, (2019).
[41]      Salman, M. S., "Removal of sulfate from waste water by activated carbon", Al-Khwarizmi Engineering Journal, 5: pp. 72-76, (2009).
[42]      Naghizadeh, A., Ghasemi, F., Derakhshani, E.,Shahabi, H., "Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles", Desalination and Water Treatment, 80: pp. 247-254, (2017).
[43]      Srivastav, A. L., Singh, P. K., Weng, C. H., Sharma, Y. C., "Novel Adsorbent Hydrous Bismuth Oxide for the Removal of Nitrate from Aqueous Solutions", Journal of Hazardous, Toxic, and Radioactive Waste, 19: p. 04014028, (2015).
[44]      Chen, F., Wu, Q., Lü, Q., Xu, Y., Yu, Y., "Synthesis and characterization of bifunctional mesoporous silica adsorbent for simultaneous removal of lead and nitrate ions", Separation and Purification Technology, 151: pp. 225-231, (2015).
[45]      Mehrabi, N., Soleimani, M., Yeganeh, M. M., Sharififard, H., "Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles", RSC advances, 5: pp. 51470-51482, (2015).
[46]      Khatamian, M., Divband, B., Shahi, R., "Ultrasound assisted co-precipitation synthesis of Fe3O4/bentonite nanocomposite: Performance for nitrate, BOD and COD water treatment", Journal of Water Process Engineering, 31: p. 100870, (2019).
[47] Patil, I., Husain, M., Rahane, V., "Ground water nitrate removal by using ‘Chitosan’as an adsorbent", International Journal of Modern Engineering Research (IJMER), 3: pp. 346-349, (2013).