بررسی امکان قطع موقت جریان گاز با استفاده از تشکیل هیدرات یا تشکیل یخ محل برای انجام تعمیرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی شیمی، دانشگاه تبریز

2 استاد مهندسی شیمی، دانشگاه تبریز

3 دانشجوی دکتری مهندسی شیمی، دانشگاه تبریز

4 کارشناس مهندسی شیمی، شرکت گاز منطقه تبریز

چکیده

اغلب تشکیل هیدرات در سامانه‌­های انتقال و توزیع گاز نامطلوب است و معمولاً به‌روش‌های مختلف از تشکیل آن جلوگیری می­شود. در این پژوهش به بررسی امکان قطع موقت جریان گاز در خطوط از راه تشکیل هیدرات یا تشکیل یخ (بهصورت کنترل­شده) در محل مورد نظر از خطوط لولۀ گاز برای انجام تعمیرات، ارائۀ روش انجام این کار و نیز نحوۀ رفع آن پس از خاتمۀ عملیات تعمیرات و با در نظر گرفتن موارد ایمنی پرداخته شد و بهترین روش پیشنهادی بر اساس بهترین یا نزدیک­ترین معیار عملیاتی و کاربردیشدن ارزیابی شد. کلیۀ داده­های تجربی موجود برای گاز طبیعی جمع­آوری و دمای تشکیل هیدرات با استفاده از شبکه­های عصبی مصنوعی مدل RBF  (شبکۀ تابع پایه شعاعی) در محیط نرم­افزار متلب شبیه­سازی و این نتایج با داده­های تجربی مقایسه شد. میانگین مربعات خطا برای این شبکههای عصبی مصنوعی کمتر از مقدار مطلوب است. در ادامه یکی از کاربردی­ترین موارد بررسیشد و مورد تحلیل و بسط برحسب فرمول‌بندی ثابت­ها و متغیرهای ریاضی برای کاربردیشدن قرار گرفت. برای تشکیل همزمان هیدرات و یخ در داخل لوله لازم است تا دمای گاز طبیعی از  °F60 به °F 32 رسانده شود؛ برای این منظور سیال خنک­کنندۀ دستگاه، مایع نیتروژن در دمای °C79/195- ضروری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigate the Possibility of Temporary Natural Gas Transportation Line Blocking by Using Hydrate Formation for Repairs

نویسندگان [English]

  • T. Ghezelgheshlaghi 1
  • S. Zeinali Heris 2
  • M. Norouzi Gaz-koh 3
  • Y. Eslamian 4
1 M. Sc. Student of Chemical Engineering, University of Tabriz
2 Professor of Chemical Engineering, University of Tabriz
3 Ph. D. Student of Chemical Engineering, University of Tabriz
4 M. Sc. in Chemical Engineering, East Azerbaijan Province Gas Company
چکیده [English]

Hydrate formation is often undesirable in gas transmission and distribution systems and is often prevented from forming by various methods. In this study, the possibility of interrupting the flow of gas through the formation of hydrates or the formation of ice (controlled) at the desired location pipelines for repairs, the method of doing this, as well as how to resolve it after completion of repairs and safety considerations has been considered and the best approach has been evaluated based on the best or the nearest operational and operational criteria. All experimental data for natural gas are collected and the hydration formation temperature is simulated using artificial neural networks of the RBF model in the software environment of MATLAB. These results are compared with the experimental data, the mean square error for these artificial neural networks are less than optimal. In this study, the effect of the presence of nanomaterials on the formation of natural gas hydrates on simulated temperature and pressure parameters using artificial neural networks RBF (time series) has been empirically derived from valid papers In the following, one of the most practical cases has been studied and analyzed and expanded according to the formulation of mathematical constants and variables to be applied. For the simultaneous formation of hydrate and ice inside the tube, it is necessary to raise the temperature of natural gas from 60°F to 32°F, for this purpose, the cooling fluid of the device is nitrogen liquid at a temperature of -195.79 °C.

کلیدواژه‌ها [English]

  • Natural gas
  • hydrate
  • Repairs
  • Ice Flow Breaker
[1]       Sloan, E. D., Koh, C. A., Koh, C., "Clathrate hydrates of natural gases", Third edition, CRC Press, Taylor and Francis Group, London, 752, (2007).
[2]       Sloan, E. D., "Fundamental principles and applications of natural gas hydrates", Nature, 426(6964), pp. 353-363, (2003).
[3]       Demirbas, A., "Methane gas hydrate", Springer Publications. London, p. 186, (2010).
[4]       Mokhtari, B., Kazempour, M., "Gas hydrates (concepts and definitions)", Offshore Oil Company Publications (Research and Development Unit), Tehran, 188, In Persian, (2007).
[5]       Ganji, H., Manteghian, M., Sadaghianizadeh, K., Omidkhah, M. R., Rahimi Mofrad, H., "Effect of different surfactants on methane hydrate formation rate, stability and storage capacity", Fuel, 86, pp. 434-441, (2007).
[6]       Ganji, H., Manteghian, M., Rahimi Mofrad, H., "Effects of mixed compounds on methane hydrate formation and dissociation rates and capacity", Fuel Processing Technology, 88, pp. 891-895, (2007).
[7]       Liu, Y., Gou, K., Liang, D., Fan. S., "Refrigerant gas hydrate growth under influence of magnetic field", Science in China (Series B), 33(1), pp. 89-96, (2003).
[8]       Liu, Y., Gou, K., Liang, D., Fan. S., "Experimental study on crystallizing process of HCFC-141b hydrate by ultrasonic", Journal of Wuhan University of Technology (China), 24(12), pp. 21-3, (2003).
[9]       Niknam, M., "Simulation and estimation of hydrate formation conditions in gas transmission lines and facilities", Master Thesis, Ferdowsi University of Mashhad, 55, In Persian, (2011).
[10]    Gupa, M., Jin, L., Homma, N., "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory", 1st edition, John Wiley and Sons Inc., New Jersey, U.S.A, 722, (2003).
[11]     Jourabian, M., Hooshmand, R., "Fuzzy logic and neural networks of concepts and applications", First edition, Shahid Chamran University of Ahvaz, 318, In Persian, (2002).
[12]    Katz, D. L., "Handbook of Natural Gas Engineering", McGraw-Hill Publishing Company, New York, 802, (1959).
[13]     Elgibaly, A. A., Elkamel, A. M., "A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors", Fluid Phase Equlibria, 152(1), pp. 23-42, (1998).
[14]     Peters, M. S., Timmerhaus, K. D., "Plant Design and Economics for Chemical Engineers", 4th edition, McGraw-Hill Publishing Company, New York, 1008, (1991).
[15]     Antonino, T. D. S., Guimarães, P. B., Alécio, R. A., Yadava, Y. P., Ferreira, R. A. S., "Measurements of the Thermophysical Properties of the API 5L X80", Materials Sciences and Applications, 624, pp. 617-627, (2014).
[16]     Iranian Gas Standards, IGS-M-CH-033(0) ,Pipeline Quality Natural Gas, (2004).
[17]     Incropra, F. P., Dwight, D. P., "Introduction to Heat Transfer", (Translator: Bahram Pousti). Publication of academic books, Tehran, 690, In Persian, (2003).
[18]     Farzanehgard, M., Bayat, Y., Hashemi M., "Shahram. Calculation of constant pressure and constant volume heat capacities and isotropic power of natural gas mixtures using AGA 8 method for Shanol gas field", 17th Annual International Conference on Mechanical Engineering, University of Tehran, Tehran-Iran. In Persian, May (2009).
[19]     Katz, D. L., "Handbook of Natural Gas Engineering", McGraw-Hill Publishing Company, New York, 802, (1959).
[20]     Bennett, H., "The Chemical Formulary", D. Van Nostrand Company, INC, New York, 650, (1933).