امکان‌سنجی فنی- اقتصادی همنهشت اسید لویولینیک از مونوساکاریدها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مهندسی شیمی، دانشگاه مراغه

2 دانشجوی کارشناسی مهندسی شیمی،دانشگاه مراغه

3 استادیار مهندسی شیمی، پژوهشگر مهمان، دانشگاه بیرمنگام

چکیده

اسید لویولینیک به‌عنوان یکی از ترکیبات واسطۀ تبدیل زیست‌توده به مواد با ارزش افزودۀ بالا معرفی شده است. در این مطالعه، فرایندهای تبدیل گلوکز و فرکتوز به اسید لویولینیک در محیط آبی و در حضور اسید کلریدریک به‌عنوان کاتالیست بر مبنای داده‌های منتشرشده طراحی شده­اند. واحدهای تولیدی بر اساس آهنگ خوراک ورودی 300 تن در روز، 330 روز کاری در سال و عمر مفید 20 سال طراحی شده­اند. برآورد حداقل قیمت فروش اسید لویولینیک با فرض 10% نرخ بازگشت داخلی سرمایه بررسی شده است. طبق تجزیه و تحلیل اقتصادی، حداقل قیمت فروش اسید لویولینیک تولیدی از فرکتوز و گلوکز به‌ترتیب 457/1 و 628/1 دلار بر کیلوگرم برآورد شده است. آنالیز حساسیت انجام‌شده بر روی حداقل قیمت فروش محصول بیانگر این موضوع است که در این فرایندها، قیمت خوراک و بازده تولید اسید لویولینیک دو متغیر مهم در تعیین حداقل قیمت فروش محصول هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Techno-Economic Analysis of the Levulinic Acid Synthesis from Monosaccharides

نویسندگان [English]

  • S. Alipour 1
  • A. H. Ghafelebaashi 2
  • Ch. Savari 3
1 Assistant Professor of Chemical Engineering, University of Maragheh
2 B. Sc. Student of Chemical Engineering, University of Maragheh
3 Assistant Professor of Chemical Engineering, Research Fellow, University of Birmingham
چکیده [English]

Levulinic acid (LA) has been reported as an important building block in the road map of converting biomass to value added compounds. Since LA is a versatile molecule, techno-economic analysis of its production from C-6 monosaccharides has been investigated. In this study, the process of glucose and fructose conversion to LA was designed in an aqueous solution in presence of HCl as the homogeneous acid catalyst based on published data. In order to perform the economic analysis, parameters were considered as feed mass flow rate 300 tons/day, working days per year 330, plant lifetime of 20 years, and 10% internal interest rate. Based on economic evaluations, the minimum selling price (MSP) of LA produced from fructose and glucose were 1.457 and 1.628 $/Kg, respectively. Sensitivity analysis was conducted to investigate different parameters impacts on MSP. Results indicate that feed price and product yield are major affecting parameters.
 
 

کلیدواژه‌ها [English]

  • Levulinic Acid
  • Techno-Economic Evaluation
  • Biomass
  • Glucose
  • Fructose
[1]        International Energy Agency, World Energy Balances (IEA), https://webstore.iea.org/download/ direct/ 2263?fileName=World_Energy_Balances_2018_ Overview.pdf, (2018).
[2]        Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S., "Top value added chemicals from biomass, Results of screening for potential candidates from sugars and synthesis gas", 1, pp. 26-28, (2004).
[4]        Horváth, I. T., Mehdi, H., Fábos, V., Boda, L., Mika, L. T., "γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals", Green Chem., 10, pp. 238-242, (2008).
[6]        Cao, W., Lin, L., Qi, H., He, Q., Wu, Z., Wang, A., Luo, W., Zhang, T., "In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone", J. of Catal., 373, pp. 161-172, (2019).
[7]        Trombettoni, V., Bianchi, L., Zupanic, A., Porciello, A., Cuomo, M., Piermatti, O., Marrocchi, A., Vaccaro, L., "Efficient catalytic upgrading of levulinic acid into alkyl levulinates by resin-supported acids and flow reactors", Catal., 7, p. 235, (2017).
[8]        Mascal, M., Dutta, S., Gandarias, I., "Hydrodeoxygenation of the angelica lactone dimer, a cellulose based feedstock: simple, high yield synthesis of branched C7–C10 gasoline like hydrocarbons", Angew. Chem. Int., 53, pp. 1854-1857, (2014).
[9]        Upare, P. P., Lee, J. M., Hwang, Y. K., Hwang, D. W., Lee, J. H., Halligudi, S. B., Hwang, J. S., Chang, J. S., "Direct hydrocyclization of biomass‐derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts", Chem. Sus. Chem., 4, pp. 1749-1752, (2011).
[10]      Bedwell, J., MacRobert, A., Phillips, D., Bown, S., "Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model", Br. J. Cancer, 65, p. 818, (1992).
[11]      Signoretto, M., Taghavi, S., Ghedini, E., Menegazzo, F., "Catalytic production of Levulinic acid (LA) from actual biomass", Molecules, 24, pp. 2760-2780, (2019).
[12]      Liu, H. -F., Zeng, F. -X., Deng, L., Liao, B., Pang, H., Guo, Q. -X., "Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid", Green Chem., 15, pp. 81-84, (2013).
[13]      Kang, S., Fu, J., Zhang, G., "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed Hydrolysis", Renew. Sustain. Energy Rev., 94, pp. 340-362, (2018).
[14]      Cao, L., Yu, I. K. M., Cho, D., Wang, D., Tsang, D. C. W., Zhang, S., Ding, S., Wang, L., Ok, Y. S., "Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar", Bioresour. Technol., 273, pp. 251-258, (2019).
[15]      Girisuta, B., Heeres, H. J., "Levulinic acid from biomass: synthesis and applications", Fang, Z., Smith, Jr. R., Qi X., (eds.), Production of Platform Chemicals from Sustainable Resources, Biofuels and Biorefineries, Springer, Singapore, pp. 143-169, (2017).
[16]      Shen, F., Smith, Jr, R. L., Li L., Yan L., Qi, X.,"Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst", ACS Sustainable Chem. Eng., 5, pp. 2421−2427, (2017).
[17]      Upare, P. P., Yoon. J. W., Kim, M. Y., Kang., H. Y., Hwang, D. W., Hwang,Y. K., Kun. H. H., Chang. J. S., "Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts", Green Chem., 15, pp. 2935-2943, (2013).
[18]      Thapa, I., Mullen, B., Saleem, S., Leibig, C., Baker, R. T., Giorgi, J. B., "Efficient green catalysis for the conversion of fructose to levulinic acid", Appl. Catal. A-Gen., 539, pp. 70-79, (2017).
[19]      Khan, A. S., Man, Z., Bustam, M. A., Kait, C. F., Nasrullah, A., Ullah, Z., Sarwono, A., Ahamd, P., Muhammad, N., "Dicationic ionic liquids as sustainable approach for direct conversion of cellulose to levulinic acid", J. Clean. Prod., 170,pp. 591-600, (2018).
[20]      Liu L., Li, Z., Hou, W., Shen, H., "Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid", Carbohydr. Polym., 181, pp. 778-784, (2018).
[21]      Alonso, D. M., Gallo, J. M. R., Mellmer, M. A., Wettstein, S. G., Dumesic, J. A., "Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts", Catal. Sci. Technol., 3, pp. 927-931, (2013).
[22]      Kazi, F. K., Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A., Anex, R. P., "Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes", Chem. Eng. J., 169, pp. 329-338, (2011).
[23]      Weingarten, R., Cho, J., Xing, R., Conner Jr, W. C., Huber, G. W., "Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions", Chem. Sus. Chem., 5, pp. 1280-1290, (2012).
[24]      Kuster, B. F. Van Der Baan, H. S., “The influence of the initial and catalyst concentrations on the dehydration of D-fructose", Carbohydr. Res., 54, pp. 165-176, (1977).
[25]      He, J., Liu, M., Huang, K., Walker, T. W., Maravelias, C. T., Dumesic, J. A., Huber, G. W., "Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures", Green Chem., 19, pp. 3642-3653, (2017).
[26]      Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., "Analysis, synthesis and design of chemical processes", Pearson Education, (2008).
[27]      Alipour, S., Karimi., A., Savari, C., "Techno-economic analysis of small scale electricity generation from the lignocellulosic biomass", J. Chem. Petrol. Eng., 52, pp. 195-202, (2018).
[28]      Peters, M. S., Timmerhaus, K. D., West, R. E., Timmerhaus, K., West, R., "Plant design and economics for chemical engineers", 5th ed, McGraw-Hill Inc. (2003).
[29]      Van Putten, R. -J., Van Der Waal, J. C., De Jong, E., Rasrendra, C. B., Heeres, H. J., de Vries, J. G., "Hydroxymethylfurfural, a versatile platform chemical made from renewable resources", Chem. Rev., 113, pp. 1499-1597 (2013).
[30]      Weingarten, R., Conner, W. C., Huber, G. W., "Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst", Energy Environ. Sci., 5, pp. 7559-7574, (2012).