تخمین اندازۀ حفره‌ها و نفوذپذیری در محیط متخلخل با استفاده از پردازش تصویر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

در این پژوهش با تصویربرداری از بستر ذرات کروی و استفاده از پردازش تصویر، اطلاعات ریخت‌شناختی محیط متخلخل نظیر توزیع اندازۀ ذرات و حفره‌ها، تعداد ذرات و تخلخل استخراج شد. با بررسی داده­های به دست آمده، مشاهده شد که نسبت میانگین قطر حفره‌ها به میانگین قطر ذرات با تخلخل رابطۀ لگاریتمی دارد. با توجه به اهمیت محاسبۀ ضریب نفوذپذیری در محیط­های متخلخل، از مدل شبکۀ حفره­ای استفاده شد. برای ساخت شبکۀ حفره­ای کلیۀ اطلاعات استخراجشده از تصویر به کار رفت. بعد از اعمال معادلات حاکم در شبکه، توزیع فشار، دبی جریان و درنتیجه ضریب نفوذپذیری حساب شد. نتایج حاصل از شبیه­سازی برای اعتبارسنجی با ضریب نفوذپذیری اندازه­گیری شده در آزمایش و معادلات تجربی کارمن-کوزنی و ربانی و همکاران مقایسه و مشاهده شد که نتایج آزمایشگاهی با نتایج مدل شبکۀ حفره­ای بهدلیل در نظر گرفتن ساختار داخلی محیط متخلخل به‌صورت حفره‌ها و گلویی­ها مطابقت بیشتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Pore Size and Permeability in Porous Media Using Image Processing

نویسندگان [English]

  • M. Kianinia
  • S. M. Abdoli
  • S. Shafiei
Sahand University of Technology
چکیده [English]

In this study, the porous media's morphological information, such as pore and particle size distribution, number of particles, and porosity, was extracted using image processing by imaging the spherical particle bed. The findings revealed that the ratio between the average pore diameter and the mean particle diameter is logarithmically related to porosity. The pore network model was used to measure the permeability in porous media. To create a pore network, all of the information derived from the image was used. The pressure distribution, flow rate, and consequently, the permeability have been determined after applying the governing equations in the network. The simulation findings for validation were compared to the permeability calculated in the experiment and the Carmen-Kozeny and Rabbani et al. equations. It was observed that the experimental results are more consistent with the results of the pore network model due to considering the internal structure of the porous media in the form of pores and throats.

کلیدواژه‌ها [English]

  • image processing
  • Pore size distribution
  • Pore network model
  • Permeability

 

[1]        Bear, J., Cheng, A. H. -D. Modeling Groundwater Flow and Contaminant Transport. Springer Netherlands, Dordrecht,1st ed., XXI, p. 834, (2010).
[2]        Xiong, Q., Baychev, T. G., Jivkov, A. P., "Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport", Journal of Contaminant Hydrology,
Vol. 192, pp. 101–117, (2016).
[3]        Rahrah, M., Lopez-Peña, L. A., Vermolen, F., Meulenbroek, B., "Network-Inspired versus Kozeny–Carman Based Permeability-Porosity Relations Applied to Biot’s Poroelasticity Model", Journal of Mathematics in Industry, Vol. 10, No. 1,
p. 19, (2020).
[4]        Guo, Z., Ren, X., Nong, M., "A Novel Kozeny-Carman-Based Permeability Model for Hydrate-Bearing Sediments", Earth and Space Science Open Archive, (2020).
[5]        Singh, H., Myshakin, E. M., Seol, Y., "A Novel Relative Permeability Model for Gas and Water Flow in Hydrate-Bearing Sediments With Laboratory and Field-Scale Application", Scientific Reports, Vol. 10, No. 1, p. 5697, (2020).
[6]        Henderson, N., Brêttas, J. C., Sacco, W. F., "A Three-Parameter Kozeny-Carman Generalized Equation for Fractal Porous Media", Chemical Engineering Science, Vol. 65, No. 15, pp. 4432–4442, (2010).
[7]        Khaddour, F., Grégoire, D., Pijaudier-Cabot, G., "A Hierarchical Model for the Computation of Permeation Properties of Porous Materials and Their Enhancement Due to Microcracks", Journal of Engineering Mechanics, Vol. 144, No. 2, p. 04017160, (2018).
[8]        Ecay, L., Grégoire, D., Pijaudier-Cabot, G., "On the Prediction of Permeability and Relative Permeability from Pore Size Distributions", Cement and Concrete Research, Vol. 133, p. 106074, (2020).
[9]        Gunjal, P. R., Ranade, V. V, Chaudhari, R. V., "Computational Study of a Single-Phase Flow in Packed Beds of Spheres", AIChE Journal, Vol. 51, No. 2, pp. 365–378, (2005).
[10]      Yang, X., Mehmani, Y., Perkins, W. A., Pasquali, A., Schönherr, M., Kim, K., Perego, M., Parks, M. L., Trask, N., Balhoff, M. T., Richmond, M. C., Geier, M., Krafczyk, M., Luo, L.-S., Tartakovsky, A. M., Scheibe, T. D., "Intercomparison of 3D Pore-Scale Flow and Solute Transport Simulation Methods", Advances in Water Resources, Vol. 95, pp. 176–189, (2016).
[11]      Raoof, A., Nick, H. M., Hassanizadeh, S. M., Spiers, C. J., "PoreFlow: A Complex Pore-Network Model for Simulation of Reactive Transport in Variably Saturated Porous Media", Computers & Geosciences, Vol. 61, pp. 160–174, (2013).
[12]      Nukunya, T., Devinny, J. S., Tsotsis, T. T., "Application of a Pore Network Model to a Biofilter Treating Ethanol Vapor", Chemical Engineering Science, Vol. 60, No. 3, pp. 665–675, (2005).
[13]      Dullien, F. A. L. Porous Media: Fluid Transport and Pore Structure. Elsevier, California, 2nd ed., p. 574, (1992).
[14]      Rajabbeigi, N., Elyassi, B., Tsotsis, T. T., Sahimi, M., "Molecular Pore-Network Model for Nanoporous Materials. I: Application to Adsorption in Silicon-Carbide Membranes", Journal of Membrane Science, Vol. 335, Nos. 1–2, pp. 5–12, (2009).
[15]      Sok, R. M., Knackstedt, M. A., Sheppard, A. P., Pinczewski, W. V., Lindquist, W. B., Venkatarangan, A., Paterson, L., "Direct and Stochastic Generation of Network Models from Tomographic Images; Effect of Topology on Residual Saturations", Transport in Porous Media, Vol. 46, No. 2/3, pp. 345–371, (2002).
[16]      Dong, H., Blunt, M. J., "Pore-Network Extraction from Micro-Computerized-Tomography Images", Physical Review E, Vol. 80, No. 3, p. 036307, (2009).
[17]      Wildenschild, D., Sheppard, A. P., "X-Ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems", Advances in Water Resources, Vol. 51, pp. 217–246, (2013).
[18]      Kaestner, A., Lehmann, E., Stampanoni, M., "Imaging and Image Processing in Porous Media Research", Advances in Water Resources, Vol. 31, No. 9, pp. 1174–1187, (2008).
[19]      Chai, W. S., Cheah, K. H., Koh, K. S., Chin, J., Chik, T. F. W. K., "Parametric Studies of Electrolytic Decomposition of Hydroxylammonium Nitrate (HAN) Energetic Ionic Liquid in Microreactor Using Image Processing Technique", Chemical Engineering Journal, Vol. 296, pp. 19–27, (2016).
[20]      Grudzień, K., Sankowski, D., "Methods for Monitoring Gravitational Flow in Silos Using Tomography Image Processing", Informatics Control Measurement in Economy and Environment Protection, Vol. 7, No. 1, pp. 24–29, (2017).
[21]      Shao, S., Li, C., Hong, J., "A Hybrid Image Processing Method for Measuring 3D Bubble Distribution Using Digital Inline Holography", Chemical Engineering Science, Vol. 207,
pp. 929–941, (2019).
[22]      Baldwin, C. A., Sederman, A. J., Mantle, M. D., Alexander, P., Gladden, L. F., "Determination and Characterization of the Structure of a Pore Space from 3D Volume Images", Journal of Colloid and Interface Science, Vol. 181, No. 1, pp. 79–92, (1996).
[23]      Sheppard, A. P., Sok, R. M., Averdunk, H., "Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials", Physica A: Statistical Mechanics and its Applications, Vol. 339, Nos. 1–2, pp. 145–151, (2004).
[24]      Ketcham, R. A., "Three-Dimensional Grain Fabric Measurements Using High-Resolution X-Ray Computed Tomography", Journal of Structural Geology, Vol. 27, No. 7, pp. 1217–1228, (2005).
[25]      Rabbani, A., Jamshidi, S., "Specific Surface and Porosity Relationship for Sandstones for Prediction of Permeability:, International Journal of Rock Mechanics and Mining Sciences, Vol. 71, pp. 25–32, (2014).
[26]      Nishiyama, N., Yokoyama, T., "Permeability of Porous Media: Role of the Critical Pore Size", Journal of Geophysical Research: Solid Earth, Vol. 122, No. 9, pp. 6955–6971, (2017).
[27] Sarout, J., "Impact of Pore Space Topology on Permeability, Cut-off Frequencies and Validity of Wave Propagation Theories", Geophysical Journal International, Vol. 189, No. 1, pp. 481–492, (2012).